FLOW AND PLASTICITY VIA NONEQUILIBRIUM MOLECULAR DYNAMICS

WILLIAM G, HOOVER

1. SYNOPS{S

The viscous flow of flulds and the plastic flow of sollds, such as
metals, are Interesting from both the practical and the theoretlical polints of
view, Atomlstic "molecular dynamics™ simulations provide a way of visualizing
and understanding these flows In a detalled microscopic way. Simulations are
necessarily carrled out at relatively high rates of strain. For this reason
they are ideally sulted to the study of nonllnear flow phenomena: normal
stresses Induced by shear deformation, stress rotation, and the couplling of
stress with heat flow, for Instance. The simulations require appropriate
boundary conditlons, forces, and equations of motion. Newtonian mechanics Is
relatively inefficlent for this simulation task. A modification, "Nonequl=
[1brium Molecular Dynamics," has been developed to slmulate nonequilibrium
flows.1 By now, many hlgh-strain-rate rheologlcal studles of fiowing
(viscous) flulds and (plastic}) sollds have been carried out. Here | describe
the new methods used In the simulations and some results obtained In this way.
A three~body shear~flow exercise Is appended to make these Ideas more

concrete,
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2, INTRODUCTION

Molecular dynamlcs is the numerlical solution of the equations of motion
of N Interacting particles, The original "equilibrium" version of molecular
dynamics solved Newton's equations of motion. The volume V was kept fixed, so
that the energy E was a constant of the motion. This early work was mainly
devoted to determining the thermodynamic "equatlon of state", relating the
pressure P and temperature T to E and V., A few studles of [inear transport
phenomena were carried out, using expressions linking equlllbrium fluctuations
to |Inear transport properties. Veloclty fluctuations, stress fluctuations,
and heat current fluctuations respectively were used to find the diffusion
coefficlent, the viscosity coefficlents, and the thermal conductivity. In
additlon, the structure of flulds, Including gas~liquld mixtures, and the
dynamic approach to equllibrium were studied. The equilibrium resuits led to
theoretical advances In estimating the equation of state. Results for simple
systems were used as a basls for a perturbation treatment of more complicated
cases. This approach was successful. The equation~of-state problem can now
be considered solved, at least for simple, pairwise-additlve short-ranged
Interactions.

Progress on nonequillbrium problems has been slower due to the lack of a
sultable perturbation theory. For this reason there has been conslderable
activity In simulating, as opposed to calculating from theory, nonequilibrlium
flows. Shockwaves, surface colllislons, rapld expanslons, heat flows, and the
{tke have all been studled. Here | will describe only the shear deformation
of simple materlials (elther fluid or solld), a path leadling to viscosity for
tiulds? and to yleld strength for sollds.>

These simulations use a modified "nonequl {ibrium" molecular dynamics

which incorporates the deformation being studied as well as a steady-state
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thermostat to increase computational efflciency. | describe the thermo-
statting and deformation techniques first. Then | outline the applications
of these nonequilibrlum techniques to particular fluld and solld systems.

| belleve there Is great potentlal for combinling the nonequilibrium
methods with models for metals to study problems of metal lurgical Interest.

This application of nonequilibrium molecular dynamlcs Is stiil in Its Infancy.

3. NONEQUILIBRIUM MOLECULAR DYNAMICS

Irreversible flows Invariably involve the conversion of work Into heat.
The Irreversible heat then acts to change material properties In a very
nonlinear way. Thus transient irreversible problems are much more complicated
than steady flows. The Irreversible heating Is particularly severe In
microscopic computer simulations because very high straln rates must be used.
(Otherwise the slmulations would require too much time.) Glgahertz to
terahertz strain rates are necessary If the Induced stresses are to exceed the
natural thermal fluctuations present In small systems. Thus the time required
for a significant change In shape in a computer simulatlon |les between a
plcosecond and a nanosecond.

A nanosecond of real time corresponds to about 100,000 time steps In a
computer simulation. Terahertz straln rates exceed the rates In rapld
Hopk inson~bar experiments by about seven orders of magnitude. Because the
Irreversible heat varles as the square of the deformation rate, the heatling
rate In a stralghtforward computer simulation would be of order 1012
kelvins/second.

To avold the irreversible heating, steady states can be simulated by

forcing the microscopic temperature, energy, or enthalpy to remaln fixed.?
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From the microscopic viewpoint femperature is simply a measure of mean~squared
particle velocity. Thls quantity, when summed over all particles, can be held
constant by a frictional dampling force -cF. That additional force, added to

the Newtonlan Force F, can be expressed directiy In terms of the interparticle

forces and velocitles F:

=0 . (1)

The isothermal equations of motlion (1) conserve kinetic, rather than
total, energy. They can be derived directly from Gauss' "Principle of Least
Constralnt®”, This Principle Is a generallzation of Newtonlan mechanlcs which
makes 1t possible to satisfy constralnts (constant femperature, stress, heat
flux, ...} typical of nonequllibrium systems. These constralned systems make
possible the study of systems with large gradients or flows. For example,
under shockwave condltlons, "temperature" can be very anlsotropic. The
temperature parallel to the direction of shockwave propagation can exceed the
transverse temperature by a factor of two. Such nonequliibrlum temperature
distributions can have profound effects on chemlical reaction rates. These
interesting problems can be treated by a tensor generalization of equation
(1), but a thorough discussion would take us too far afield.

With the thermostat provided by equations of motion (1} we can study flow

problems Invoiving deformation. The Irreversible heat which deformation
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provldes~~viscous heating in flulds, plastic work In sollds=-can than be
absorbed as rapidly as It is produced.

Deformation can be [nduced through boundary forces or displacements, or
by lmposing a macroscopic deformation throughout the system. Three types of

macroscopic shear deformations are Indicated In figure 1:

e
{1 (2) (3)
SIMPLE SHEAR UNIAX1AL SHEAR ELANAR SHEAR

Fligure 1. Three Macroscopic Shear Deformations.

In each case the flgure shows the effect of deformation on an initlal
cube, Simple shear (or "plane couette flow') Is a rotational flow In which
the fluld elements rotate clockwise with an angular velocity equal to half the

shear strain rate ¢ = du/dy. Unlaxlal shear (with & =-28 =-28 ) is

Yy
typlcal of the shape change undergone during shockwave compression. This

flow, as well as the two-dimensional "planar shear™ verslon shown {ast
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{with §XX=-E 0), is Irrotational, The first of these flows has been

P
yy#tzz"
extensively studled, for It can be simulated as a true steady state.

For small straln rates, all three shear flows can be described by the
same phenomenologlical coefficlent: shear viscosity in the case of flulds;
yield strength In the case of solids. When nonllnear effects must be
included, all three flows are fundamentaily different. Here we will study In
more detall the first flow shown above, slmple shear, in the steady state at
constant temperature. We will conslider a range of strain rates for which
nonl Inear effects are important.

We begin by distinguishing the systematic macroscoplc velocity, u =
{£y,0,0), from the local migroscoplc velocity p/m = (px,py,pz)/m. We expect
that the microscopic velocitles p/m will have nearly an equlilbrium (Maxwell~
Boltzmann) distributlion at smali enough rates of straln &. Because the
systematic veloclty varies from polnt to polnt, there Is a Coriolls?
acceleration affecting the momenta p. In the case of simple shear, a free

particle moving In the y direction with x fixed would undergo an effectlive

acceleration:
X=0= {p/m) + by e > ﬁx = —Epy . )

Adding this effective acceleration to +he Newlonlan forces gives the set of

equations describing adlabatic simpie shear:

X = (p/m) + 2y, ¥ = (py/m, 2= (p,/m),

Py = Fy = Zpy) By = Fys P,=F, . (3)
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Tempérafure is <p2/3mk>. By generallzing the frictlon coefficlient T from (1)

to Include the Corlolls contributton, we find the equations describing

dsothermal simple shear:

X = {py/m) + gy , ¥ = (py/m), 7= {p,/m)

. . -
pngx"EPy-Cpxopy'Fy'{;pyrpZ—Fzﬂk’;pz . (4}

The boundaries of the system are usually taken fo be perlodlic, as shown?

in Figure 2, to ellminate the edge effects assoclated with small systems,

Shear flow simulations have been

. carrled out for a wide range of
thermodynamic states and strain
rates, for ftwo- and three-dimensional
flulds and sollds. In three dimen-
sions there are 6N equations of

motion., These can convenlently be

solved using the fourth-order Runge~-
Kutta method. In two dimenslons
there are 4N squations of motion.
The Inltial velocities are usually
Figure 2. Two~DImensliona! Shear Flow.
chosen from a Maxwel [-Boltzmann

distribution. The momenta {p} are then

scaled to the deslired temperature.

That temperature is subsequently maintalned by the equations of motion (4},

The trajectories which result can then be analyzed for structure.
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Thermodynamic functions, such as the pressure tensor, can be obtained by time
averaging the corresponding phase functlons.

The pressure tensor P is the same as the momentum flux, a measure of the
flow of momentum, per unit area and time. Because the flow direction (normal
to the area) and the momentum direction are both vector quantities, pressure
is a second-rank (two-index) tensor, 2xZ in two dimensions and 3x3 in three
dimensions. The pressure tensor has two kinds of contributions In a system
characterized by palrwise-additive forces. The single~particle convective
contributions (pp/m)/V give the flow of momenta p across comoving planes
oriented normal to the velocities p/m. In a statlonary system with sides Lx,
Ly, and Lz, for Instance, the probability that a particle will cross a plane
of area dA perpendicular to the x axis, during the time interval dt, is
(px/m)deA/V. Thus the averaged momentum flow, per unit area and time, Is the
sum, over all particles, of (pp/m)/V, with V = LXLyLz.

There Is a second contfribution to momentum flux which does not depend
upon particie motion, the actlion-at-a-distance contribution due to Inter-
particle forces. |f particle I, at X1, Interacts with parficle J, at XJ’ with
the force F, the probability that a plane normal to the x axls Intersects that
interaction Is i(x,-xj)dhfv and the corresponding flow of momentum per unlt
time and area Is iF(xr—xJ)/rdA, where r Is the distance separating the two
particles, Thus the flow of x momentum In the x direction, per unlt time and
area, has the form (x,-xJ)F(xi-xj)/rV. The complete pressure tensor P Is the

sum of both terms, convective and action-at-a-distance:

PY = J{pp/m) + JirF , (5)
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where the single sum runs over all particles and the double sum runs over all
distinct pairs of particles. If we specify a strain rate & describing the
ptane couette flow of Figure 1, the corresponding pressure~tensor element ny
can then be averaged as a function of time. At sufficlently high rates, in
flulds, or even at low rates, In solids, Poeses Pyy' and P, can also be
affected by the shear, These "normal stress effects" are responsible for a

host of nonllinear phenomenas, two of which are Indicated In Figure 3.

~ -

Pode B

Newtonian fluid Polymeric fluid Newtonian fluid Polymeric fluid

Figure 3. Two Non-Newtonian Flows exhibiting normal-stress effects.

Fluld yiscosity Is obtalned by dividing the shear stress --PXY by the

straln rate £ = duy/dy. Solid yleld strength is simply ~Py+ Both kinds of

simulations have been carried out. Some results are described In sections 4

and 6,
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4., APPLICATIONS OF NONEQUILIBRIUM MOLECULAR DYNAMICS TO FLUID FLOW

A thorough study of the depen-

I T I I |
3ﬁ_ _ dence of shear viscosity on thermo-
\ Lennard-Jones
\® dynamic state and stralin rate has
p*=0.8442 T* =0.722
" been carrled out, using the Lennard-
g 2 ]
g Jones 6-12 palr potential. Near the
[=]
é freezing line the data depend rela=-
1= Bulk K tively strongly on strain rate, so
that I+ 1s necessary to extrapolate
from the high rates of the computer
0 \ | || \
0 2 4 6 8 10 12 simuiation to obtaln the zero-rate
Strain rate macroscopic value. Typlcal data’ are
Figure 4, Vartation of Viscosities shown In Figure 4, The viscoslities
of Liquld Argon with Straln Rate. and straln rate are given In reduced

units: +the atomic mass, well depth,
and collislon dlameter are all equal to unity. The extrapolated zero-straln-
rate viscosities (open circles) are In good agreement with laboratory
measurements.
Laboratory viscosity measurements are relatively straightforward because
long~tIime steady-flow studles can be carried out. Fluld can be forced through
a constriction, as In Poiseuille flow, or stirred by a submerged disk. In

elther case the viscous power loss can be easlly measured.



5. SHOCKWAVE COMPRESSION

Much larger shear stresses, and higher strain rates, are found in the
shockwaves used to compress fluids and sollds to high pressures, pressures
which can be orders of magnitude higher than the pressure at the center of the

earth. The baslc shockwave geometry s shown in Flgure 5.:

/ P.E, T,V Po By Ty, V,

Hot, moving Cold, static

Flgure 5. Steady Shockwave Generated by a Piston Compressing a Fluid

In a steady one-dimensional (planar) shockwave cold material Is
transformed by the shock process Tnto stead!ly moving hot material with higher
pressure, energy, density, and entropy. By measuring the velocities of the
movIng hot material and the shockwave, [t Is possible to calculate the final
pressure Pxx and energy. For flulds Pxx and the final energy are equilibrium
values (because a fluld cannot support shear) and interpretation of the
shockwave velocity data Is straightforward. For solids P, differs from Pyy
(the difference Is twice the yleld strength) and the energy stightly exceeds

the value it would have under isotropic conditlons. Desplte these difflcul-~

ties, estimates of the solld's shear stress can be made.



6., APPLICATIONS OF NONEQUILIBRIUM MOLECULAR DYNAMICS TO PLASTIC FLOW

Shear flow simulations using the equations of motton (4) have also been
carried out for solids, both In two and in three dimensions.® Although the
detalls of such simulations certainly depend upon *he {nteratomic forces, only
one (very simple) force law has been used so far, the plecewise-|inear force
law shown In Figure 6. This force varies linearly from the force-free
separation d up o a maximum attractive value d + w. With further stretching

the force agaln decreases ilnearly to zero at r = d + 2w,

©

P

2

o [

= i

@ @

— e R

- £

£ w

[

&

o

(29

e d dtw  dt2w d-w d diw  d+2w
L [ e

Figure 6. Plecewise~LInear Force Law used In Plasticlty Simulatlons.

In the vicinlty of the potential minimum d, Hooke's Law Is obeyed so that

crystal propertles can be calcutated using quasiharmonic lattice dynamlcs.



That 1s the main motivatlon for studying this system. The thermodynamlic
equation of state, frequency spectrum, and properties of varlous lattice
defects Incliuding dislocations, vacancles, end cracks, have all been worked
out,

In the case of Isothermal steady shear, simulations were carried out for
a varlety of system slzes, and over about two decades of straln rate, from ten
gigahertz to one terahertz. At the low-frequency end of this range, the
deforming crysta! typlcally contained only a single pair of dislocations. At
the high-frequency end, dislocations were as numerous as particles, so that
individual lattice defects could not be Identified. The measured dependence
of stress (yleld strength) on strain rate Is summarized In Figure 7. G Is the

shear modulus; d the Interparticle spacing; and cy Is the transverse sound

speed.,
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The molecular dynamics data |le at the righthand side of the flgure.
Experimental data, estimates from plastic shockwaves In real metals, appear
near the lefthand side of the figure.

The log-log siopes (for three different temperatures) |ie between the
limits of perfect plastlcity (zero slope) and Newtonian Viscosity {unit
slope), with the slope increasing iinearly with temperature. The correspon=
dence between the computer and laboratory experiments suggests that the same
physlical mechanism is responsible for both sets of data In the high~strain-
rate reglon.

[T seems |ikely that an understanding of rapid deformation would be
useful In interpreting dynamlc compactlion experiments carried out on powdered
amorphous metals. The rapld fricttonal interactions among the compacting
grains certalnly lead to terahertz stralin rates, The detalled mechanism of

the compaction process may thus prove sensitive to rate-dependent plasticity.

7. DISLOCATION THEORY OF PLASTIC FLOW

The textbook explanation of plastic fiow ascribes that deformation to
lattice defects, dIsiocations, that move through the lattice at speeds
somewhat below the transverse sound speed cy. Serles of simulations of
disclocations have been carried out to determine thelr static and dynamic
structure, speed as a function of shear stress, and Interaction energy.3'9
These studies show that the energles of dlslocatlon structures can be
adequately described by a palrwlse-additive interaction energy of the form

predicted by elastic theory. According to the theory, the Interaction energy

of two dlsiocations, separated by a distance r and In the presence of a shear
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stress o, is of the form Ainr -Bro, within an addiflive constant, Because the
interactlon energy has a maximum, Arrhenius kinetics can be used to estimate
the rate at which pairs of dislocations are produced, varying as exp{~-AE/kT).
In the steady state, thls rate must equal the annihllation rate, which in
turns varies as the square of the strain rate. This equivalence leads to the
resuit that stress must vary as a power of the straln rate:

2KT/Db?

ofo. = (8/E) (8)

0 0
where D Is an elastic constant and b Is the Interatomic spacing. On the other
hand, the molecular dynamlcs data In figure 7 show concluslvely that the 2 in

(8) should be replaced by 3, a result impossibie to extract from the theory.

8. WHAT REMAINS TO BE DONE?

It Is clear that the nonequllibrium simulation methods will prove useful
in understanding both experimental data and In advancing the theory of plastic
filow In metals, The main difficulties, estimating forces In metals near
defects, and understanding the properties of defects when the forces are known

{as In computer simulations), stlil need conslderable attention,
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9. PROBLEM: SAMPLE SIMULATION OF STEADY SHEAR

To Illustrate the application of the nonequlliibrium equations of motlion,
we conslder an exampie whlch Is nearly the simpiest possible, namely the shear
deformation of three particies In two dimenslions., Pertodic boundarlies are

used to el Iminate edge effects. See Fig. 8.
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Figure 8. Arrows Indicate (p/m) [left] and T [rightl.

For convenience we use a fruncated Hooke's law force with the force
constant, mass, and force-free spring length all set equal to unity. Thus the
(purely-repulsive) force has a magnitude F =1 - r for r <1 and F = 0 for r >
1. Llonger-range forces, even forces extending to Inflinity, can be treated
with Ewald's Fourler~transform method, with a mocderate Increase In computer
Time. In our sample calculation we choose fixed values of both temperature
and straln rate. To start out we specify Inltial conditlons. We choose the

time g = 0.6 and the strain rate £ = 0.1, so that the Inltial shear strain Is



0,06, as Indlcated In Fig. 8. We arbitrarlly choose a baslic cell of side~
length L = 2, As the calculatlon proceeds the partlicle coordinates will
eventually leave the central 2xZ box. Provlided that the accelerations of each
particie are based on the nearest Images of Its two neighbors, as calculated
In the three~step process below, It Is not necessary to replace the
coordinates In the central box. Let us start with the arbitrary set of

coordinates x, y and thermal veloclties Px1Py shown in the Table.

Table . Initial configuration with L = 2 and ¢ = 0.06 at t, = 0.6,

[ 1 2 3

X -0.55 +0.21 +0.34

y -0.66 -0.09 +0.75

Py +0.10 ~-0.20 +0.10

Py +0.10 +0.10 =0.20

Fy -0.064 +0,017 +0,047
Fy -0.012 ~-0.118 +0.130
1, 1,2 2,3 3,1

Y17y ~0.57 -0 .84 +1.41

n 0 0 -1

Y1y ~-0.57 -0.84 -0.59

xI—xJ+2ns -0.76 ~0.13 +0.77

rij 0.95 0.85 0.97

F +0.05 +0.15 +0.03




To solve the equatlions of motion by difference-equation methods we need to
calculate the forces on each of the particles. The sheared periodic
boundaries must be taken Into account In calculating the nearest-image
separatlon of sach of the three particle pairs (1,2; 2,3; 3,1). For each

(i,]) palr the forces are calculated In three steps:

1. Calculate y(1) = y{J) and add fo it nL, where n is the Integer chosen
to make the final "nearest-Image™ separation Yij lie between -L/2 and

/2.

2, Calculate x(1) = x(]) + nLEf. to take Into account the offset of
periodic Images separated by nL In the y direction at time +. Add to
this the integer muitiple of the box length L which causes the flnal

nearest-image separation Xij to |ie between ~L/2 and +L/2.

3. Accumulate the x and y forces for the nearest-image separatlon Just
computed Into the forces on | and the forces on J. The same numbers

are used, with opposite signs.

This force calculation Is Illustrated In the lower half of the Table. From
the forces and thermal velocities the friction coefficient fcan be calculated.
For the confliguration in the Table, the "frictlon™ coefficlent £, calculated

from the forces and momenta according fo Gauss'! princlpie:

g =niiLFap/m) = T(pyp /m) Y/ §(p%/m),



Is =0,343, In this nonequllibrlum problem, where velocities play a direct
role In the equations of motion, It Is computationally convenient to solve
first-order differential equations for particle coordinates and momenta rather
than second-order coordinate equatlons. With the forces and friction
coefficlent known we have sufficlent information to advance the time using a
standard first-order dlfferentlial equatlion solver, The set of 12 equatlions

corresponding to the homogeneous deformation In Fig. 8 is the following:

%(1) = Dp(i)/m] + Ey(hy , Yy = Loy Ciy/md

Bul1) = F (i) = p (1) = Bpo iy, Bl = Fu(i) = pp (1)

for 1 =1, 2, and 3. By takling into account the fixed center of mass and
fixed kinetic energy these 12 equations could be reduced to seven, but 1t iIs
simpler to Integrate the full set. The Inevitable drift in kinetic energy due
to finite computational accuracy, can be offset by occaslonal rescaling of the
velocity. Slmultaneously, we accumulate the energy and pressure tensor, and
the probabillity distributlions in space and velocity. The resulting new
configuration, at T, + dt, then replaces the Initlal condition. We repeat the
integration process by refurning to step 1 above. Fluctuations In cumulative
averages fall off as (+ - To}'l/z as the averages stablilize., The shear
viscosity Is obtained by dividing the long-time steady value of the shear

stress =P, 1 by the strain rate &: n = -P, /2.
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