
FLOW AND PLASTICITY VIA NONEQUILIBRIUM MOLECULAR DYNAMICS 

WILLIAM G. HOOVER 

1. SYNOPSIS 

The viscous flow of fluids and the plastic flow of solids, such as 

metals, are Interesting from both the practical and the theoretical points of 

view. Atomistic "molecular dynamics" simulatIons provIde a way of visualizing 

and understanding these flows In a detailed microscopic way. Simulations are 

necessarily carried out at relatively high rates of strain. For this reason 

they are Ideally suited to the study of nonlinear flow phenomena: normal 

stresses Induced by shear deformation, stress rotation, and the couplIng of 

stress wIth heat flow, for Instance. The simulatIons requIre appropriate 

boundary conditIons, forces, and equations of motion. Newtonian mechanics Is 

relatively InefficIent for this simulation task. A modificatIon, "Nonequl-

Ilbrlum Molecular Dynamics," has been developed to simulate nonequl Ilbrlum 

flows.' By now, many hIgh-strain-rate rheological studIes of flowIng 

(viscous) fluids and (plastIc) SOlids have been carried out. Here I describe 

the new methods used In the simulations and some results obtained In thIs way. 

A three-body shear-flow exercise Is appended to make these Ideas more 

concrete. 
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2. INTRODUCTION 

Molecular dynamIcs Is the numerIcal solution of the equations of motion 

of N Interacting partIcles. The original "equl I Ibrlum" version of molecular 

dynamics solved Newton's equations of motion. The volume V was kept fixed, so 

that the energy E was a constant of the motIon. This early work was mainly 

devoted to determInIng the thermodynamIc "equatIon of state", relatIng the 

pressure P and temperature T to E and V. A few studIes of lInear transport 

phenomena were carried out, usIng expressions I Inking equilibrium fluctuations 

to linear transport properties. Velocity fluctuations, stress fluctuations, 

and heat current fluctuations respectively were used to find the diffusion 

coeffIcient, the vIscosity coeffIcIents, and the thermal conductivIty. In 

additIon, the structure of fluids, IncludIng gas-liquId mixtures, and the 

dynamic approach to equilibrium were studied. The equl I ibrlum results led to 

theoretical advances In estimating the equation of state. Results for simple 

systems were used as a basis for a perturbation treatment of more complIcated 

cases. This approach was successful. The equatlon-of-state problem can now 

be consIdered solved, at least for sImple, pairwIse-addItIve short-ranged 

interactions. 

Progress on nonequlllbrium problems has been slower due to the lack of a 

suItable perturbation theory. For thIs reason there has been consIderable 

actIvIty In simulating, as opposed to calculatIng from theory, nonequillbrlum 

flows. Shockwaves, surface collisions, rapId expansIons, heat flows, and the 

I Ike have al I been studied. Here I wI I I descrIbe only the shear deformation 

of simple materials (either fluId or solid), a path leading to viscosity for 

flulds2 and to yield strength for sollds. 3 

These simulations use a modifIed "nonequlllbrlum" molecular dynamics 

which Incorporates the deformatIon beIng studied as wei I as a steady-state 
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thermostat to increase computational efficiency. describe the thermo­

stattlng and deformation techniques first. Then outline the applications 

of these nonequl I ibrlum techniques to particular fluid and solid systems. 

I believe there Is great potential for combining the nonequll Ibrlum 

methods with models for metals to study problems of metallurgical Interest. 

This application of nonequillbrium molecular dynamics Is stili In its Infancy. 

3. NONEQUILIBRIUM MOLECULAR DYNAMICS 

Irreversible flows Invariably Involve the conversion of work Into heat. 

The Irreversible heat then acts to change material properties In a very 

nonlinear way. Thus transient Irreversible problems are much more complicated 

than steady flows. The Irreversible heating Is particularly severe In 

microscopic computer simulations because very high strain rates must be used. 

(Otherwise the simUlations would require too much time.) Gigahertz to 

terahertz strain rates are necessary If the Induced stresses are to exceed the 

natural thermal fluctuations present In smal I systems. Thus the time required 

for a significant change in shape In a computer simulation lies between a 

picosecond and a nanosecond. 

A nanosecond of real time corresponds to about 100,000 time steps In a 

computer simulation. Terahertz strain rates exceed the rates in rapid 

Hopkinson-bar experiments by about seven orders of magnitude. Because the 

Irreversible heat varies as the square of the deformation rate, the heating 

rate In a straightforward computer simulation would be of order 1012 

kelvins/second. 

To avoid the irreversible heating, steady states can be simulated by 

forcing the microscopic temperature, energy, or enthalpy to remain flxed. 4 



From the microscopic viewpoint temperature is simply a measure of mean-squared 

particle velocity. This quantity, when summed over al I particles, can be held 

constant by a frictional damping force -~r. That additional force, added to 

the Newtonian Force F, can be expressed directly In terms of the interparticle 

forces and velocItIes r: 
.mr F t;r 

o (1) 

The Isothermal equations of motion (1) conserve kInetic, rather than 

total, energy. They can be derIved dIrectly from Gauss' "Principle of Least 

Constraint". This Principle Is a generalization of Newtonian mechanics which 

makes It possible to satisfy constraints (constant temperature, stress, heat 

flux, ••• ) typical of nonequl I ibrlum systems. These constrained systems make 

possIble the study of systems with large gradIents or flows. For example, 

under shockwave conditions, "temperature" can be very anisotropic. The 

temperature paral lei to the direction of shockwave propagatIon can exceed the 

transverse temperature by a factor of two. Such nonequil ibrlum temperature 

distrIbutions can have profound effects on chemIcal reaction rates. These 

interesting problems can be treated by a tensor generalization of equation 

(1). but a thorough discussion would take us too far afield. 

With the thermostat provided by equations of motion (1) we can study flow 

problems Involving deformation. The IrreversIble heat which deformatIon 
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provldes--vlscous heatIng In fluids, plastIc work In sol Ids--can than be 

absorbed as rapidly as It Is produced. 

Deformation can be Induced through boundary forces or displacements, or 

by ImposIng a macroscopic deformation throughout the system. Three types of 

macroscopic shear deformatIons are IndIcated In figure 1: 

.. 

(1 ) (2) (3) 

SIMPLE SHEAR UNIAXIAL SHEAR PLANAR SHEAR 

FIgure 1. Three Macroscopic Shear DeformatIons. 

In each case the figure shows the effect of deformatIon on an InItIal 

cube. Simple shear (or "plane couette flow") Is a rotational flow in which 

the fluId elements rotate clockwIse wIth an angular velocIty equal to half the 

shear straIn rate s = duxldy. UnIaxIal shear (with sxx=-2£yy=-2£zz) Is 

typical of the shape change undergone durIng shockwave compression. This 

flow, as wei I as the two-dImensIonal "planar shear" versIon shown last 
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. .'" 
(with EXX=-Eyy;Ezz=O), Is Irrotatlonal. The first of these flows has been 

extensively studied, for It can be simulated as a true steady state. 

For smal I strain rates, al I three shear flows can be described by the 

same phenomenological coefficient: shear viscosity in the case of fluids; 

yIeld strength In the case of sol Ids. When nonlinear effects must be 

Included, al I three flows are fundamentally different. Here we wll I study In 

more detaIl the first flow shown above, simple shear, In the steady state at 

constant temperature. We wi II consider a range of strain rates for which 

nonlinear effects are Important. 

We begin by distinguishing the systematic macroscopic velocity, u 

(£y,O,O), from the local microscopic velocity p/m = (px,Py,pz)/m. We expect 

that the microscopic velocities p/m will have nearly an equilibrium (Maxwell­

Boltzmann) distribution at smal I enough rates of strain E. Because the 

systematic velocity varies from point to point, there Is a Corlolls' 

acceleration affecting the momenta p. In the case of simple shear, a free 

particle movIng In the y direction with x fixed would undergo an effective 

acceleration: 

---------> Px (2) 

Adding this effective acceleration to the Newtonian forces gives the set of 

equatIons describing adiabatic simple shear: 

•z (pzim), 

= (3 )Pz Fz 
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Temp'erature Is <p2/3mk>. By generalIzIng the frIctIon coefficient 1,; from (1) 

to Include the Corlolls contribution, we fInd the equatIons describing 

Isothermal simple shear: 

F -
Y 

(4 )•Py , Pz = 

The boundaries of the system are usually taken to be perIodic, as shown5 

in FIgure 2, to elIminate the edge effects assocIated wIth smal I systems. 

Shear flow simulations have been 

carrIed out for a wIde range of 

thermodynamic states and strain 

rates, for two- and three-dimensional 

fluIds and sol Ids. In three dlmen­

slons there are 6N equatIons of 

motion. These can conveniently be 

solved using the fourth-order Runge-

Kutta method. In two dimensions 

there are 4t, ..:quatlons of motIon. 

The InitIal velocIties are usually 
Figure 2. Two-DimensIonal Shear Flow. 

chosen from a Maxwel I-Boltzmann 

distrIbution. The momenta {p1 are then 

scaled to the desired temperature. 

That temperature is subsequently maintaIned by the equations of motion (4), 

The trajectories which result can then be analyzed for structure. 
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Thermodynamic functions, such as the pressure tensor, can be obtained by time 

averaging the corresponding phase functions. 

The pressure tensor P is the same as the momentum flux, a measure of the 

flow of momentum, per unit area and time. Because the flow direction (normal 

to the area) and the momentum direction are both ~ quantities, pressure 

Is a ~-£Ank (two-Index) tensor, 2x2 In two dimensions and 3x3 In three 

dimensions. The pressure tensor has two kinds of contributions In a system 

characterized by pairwise-additive forces. The single-particle convective 

contributions (pp/m)/V give the flow of momenta p across comovlng planes 

oriented normal to the velocities p/m. In a stationary system with sides Lx' 

Ly, and Lz, for instance, the probability that a particle wll I cross a plane 

of area dA perpendicular to the x axis, during the time Interval dt, is 

(px/m)dtdA/V. Thus the averaged momentum flow, per unit area and time, is the 

sum, over al I particles, of (pp/m)/V, with V = LxLyLz • 

There Is a second contribution to momentum flux which does not depend 

upon particle motion, the actlon-at-a-dlstance contribution due to inter­

particle forces. If particle I, at xi' interacts with particle J, at Xj' with 

the force F, the probability that a plane normal to the x axis Intersects that 

Interaction Is ±(xl-xj)dAlV and the corresponding flow of momentum per unit 

time and area Is ±F(xl-xJ)/rdA, where r Is the distance separating the two 

particles. Thus the flow of x momentum In the x direction, per unit time and 

area, has the form (xI-Xj)F(Xj-xj)/rV. The complete pressure tensor P Is the 

sum of both terms, convective and actlon-at-a-distance: 

PV I (pp/m) + rF (5) 
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where the single sum runs over al I particles and the double sum runs over al I 

distinct pairs of particles. If we specify a strain rate s describing the 

plane couette flow of Figure 1, the correspondIng pressure-tensor element Pxy 

can then be averaged as a function of time. At sufficiently high rates, In 

fluids, or even at low rates, In sol Ids, ' ' and Pzz can also bePxx Pyy 

affected by the shear. These "norma I stress effects" are respons ib I e for a 

host of nonlinear phenomena6, two of which are IndIcated In Figure 3. 

Newtonian fluid Polymeric fluid Newtonian fluid Polymeric fluid 

Figure 3. Two Non-Newtonian Flows exhibiting normal-stress effects. 

Fluid ylscpsity Is obtained by dividing the shear stress -P by thexy 

strain rate S= duxldy. Solid ~ strength is simply -Pxy ' Both kinds of 

simUlations have been carried out. Some results are described In sections 4 

and 6. 
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4. APPLICATIONS OF NONEQUILIBRIUM MOLECULAR DYNAMICS TO FLUID FLOW 

3 
Lennard-Jones 
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FIgure 4. VarIatIon of VIscosItIes 

of LiquId Argon wIth StraIn Rate. 

A thorough study of the depen­

dence of shear vIscosIty on thermo­

dynamIc state and straIn rate has 

been carrIed out, usIng the Lennard-

Jones 6-12 paIr potentIal. Near the 

freezIng lIne the data depend rela­

tlvely strongly on straIn rate, so 

that It Is necessary to extrapolate 

from the hIgh rates of the computer 

sImulatIon to obtaIn the zero-rate 

macroscopIc value. TypIcal data7 are 

shown In FIgure 4. The vIscosItIes 

and straIn rate are gIven In reduced 

unIts: the atomIc mass, weI I depth, 

and col I Islon dIameter are al I equal to unIty. The extrapolated zero-straln­

rate vIscosItIes (open cIrcles) are In good agreement wIth laboratory 

measurements. 

Laboratory ylscoslty measurements are relatIvely straIghtforward because 

long-tIme steady-flow studIes can be carrIed out. FluId can be forced through 

a constrIctIon, as In Polseul I Ie flow, or stIrred by a submerged dIsk. In 

eIther case the vIscous power loss can be easIly measured. 



5. SHOCKWAVE COMPRESSION 

Much larger shear stresses, and higher straIn rates, are found In the 

shockwaves used to compress fluIds and sol Ids to hIgh pressures, pressures 

which can be orders of magnItude hIgher than the pressure at the center of the 

earth. The basIc shockwave geometry Is shown In FIgure 5.: 

P,E, T,V 

Hot, moving Cold, static 

Figure 5. Steady Shockwave Generated by a PIston CompressIng a FluId 

In a steady one-dImensIonal (planar) shockwave cold materIal Is 

transformed by the shock process Into steadIly movIng hot materIal wIth hIgher 

pressure, energy, densIty, and entropy. By measurIng the velocItIes of the 

movIng hot materIal and the shockwave, It Is possIble to calculate the fInal 

pressure P and energy. For fluIds P and the fInal energy are equIlIbrIumxx xx 

values (because a fluId cannot support shear) and Interpretation of the 

shockwave velocIty data Is straIghtforward. For sol Ids P dIffers from Pxx yy 

(the dIfference Is twIce the yIeld strength) and the energy slIghtly exceeds 

the value It would have under IsotropIc condItIons. DespIte these dIffIcul­

tIes, estImates of the solId's shear stress can be made. 



_____ 

6, APPLICATIONS OF NONEQUILIBRIUM MOLECULAR DYNAMICS TO PLASTIC FLOW 

Shear flow simulations using the equations of motion (4) have also been 

carried out for sol Ids, both In two and In three dlmenslons,8 Although the 

detal Is of such simUlations certainly depend upon the Interatomic forces, only 

one (very simple) force law has been used so far, the pIecewise-I inear force 

law shown In FIgure 6. This force varies lInearly from the force-free 

separation d up to a maxImum attractive value d + w. With further stretching 

the force again decreases lInearly to zero at r = d + 2w. 

t 
>­ t 
~ u..Q) ,c: 
Q) Q) 

u"'iii (5';:;
c: u.. 
Q).. 
0 
c. 

d-w d+w d+2w d-w d d+w d+2w 
r 

Figure 6. Piecewise-Linear Force Law used In Plasticity Simulations. 

In the vicinity of the potential minimum d, Hooke's Law Is obeyed so that 

crystal properties can be calculated using quasiharmonlc lattice dynamIcs. 



That Is the main motivation for studying this system. The thermodynamic 

equatIon of state, frequency spectrum, and properties of various lattIce 

defects IncludIng dislocations, vacancies, and cracks, have al I been worked 

out. 

In the case of Isothermal steady shear, simulations were carried out for 

a variety of system sizes, and over about two decades of strain rate, from ten 

gigahertz to one terahertz. At the low-frequency end of this range, the 

deforming crystal typically contained only a single pair of dislocations. At 

the high-frequency end, dislocations were as numerous as particles, so that 

Individual lattice defects could not be identified. The measured dependence 

of stress (yield strength) on strain rate Is summarized In Figure 7. G is the 

shear modulus; d the InterpartIcle spacing; and cT Is the transverse sound 

speed. 
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The molecular dynamics data I Ie at the righthand side of the figure. 

Experimental data, estimates from plastic shockwaves In real metals, appear 

near the lefthand sIde of the fIgure. 

The log-log slopes (for three different temperatures) lie between the 

limits of perfect plasticity (zero slope) and Newtonian Viscosity (unit 

slope), with the slope Increasing I inearly with temperature. The correspon­

dence between the computer and laboratory experiments suggests that the same 

physIcal mechanism Is responsIble for both sets of data In the high-straln­

rate region. 

It seems likely that an understanding of rapid deformation would be 

useful In Interpreting dynamic compaction experiments carried out on powdered 

amorphous metals. The rapid frictional interactions among the compacting 

grains certainly lead to terahertz strain rates, The detailed mechanism of 

the compaction process may thus prove sensitive to rate-dependent plasticity. 

7. DISLOCATION THEORY OF PLASTIC FLOW 

The textbook explanation of plastic flow ascribes that deformation to 

lattice defects, dislocations, that move through the lattice at speeds 

somewhat below the transverse sound speed cT' SerIes of simulations of 

dlsciocatlons have been carried out to determine their static and dynamic 

structure, speed as a function of shear stress, and Interaction energy.3,9 

These studies show that the energies of dislocation structures can be 

adequately described by a pairwise-additive interaction energy of the form 

predicted by elastic theory. According to the theory, the Interaction energy 

of two dislocations, separated by a distance r and In the presence of a shear 
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stress 0, is of the form Alnr -Bro, within an additive constant. Because the 

interaction energy has a maximum, Arrhenius kinetics can be used to estimate 

the rate at which pairs of dislocations are produced, varying as exp(-~E/kT). 

In the steady state, this rate must equal the annihl ration rate, which In 

turns varies as the square of the strain rate. This equivalence leads to the 

result that stress must vary as a power of the strain rate: 

(8) 

where D Is an elastic constant and b Is the Interatomic spacing. On the other 

hand, the molecular dynamics data In figure 7 show conclusively that the 2 in 

(8) should be replaced by 3, a result Impossible to extract from the theory. 

8. WHAT REMAINS TO BE DONE? 

It Is clear that the nonequillbrium simulation methods wll I prove useful 

In understanding both experimental data and In advancing the theory of plastic 

flow In metals. The main difficulties, estimating forces In metals near 

defects, and understanding the properties of defects when the forces are known 

(as In computer simulations), stl II need considerable attention. 
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9. PROBLEM: SAMPLE SIMULATION OF STEADY SHEAR 

To Illustrate the application of the nonequillbrium equations of motion, 

we consider an example which Is nearly the simplest possible, namely the shear 

deformation of three particles In two dimensions. Periodic boundaries are 

used to eliminate edge effects. See Fig. 8. 

~~'i~of i crt c;( 
~I ~I 0)
~I~.~\ 
$ ,$ 1$ 

~\I~\ 
crt Jci 

~\ 
G{ 

Figure 8. Arrows Indicate (p/m) [leftJ and ~ [rlghtJ. 

For convenience we use a truncated Hooke's law force with the force 

constant, mass, and force-free spring length al I set equal to unity. Thus the 

(purely-repulsive) force has a magnitude F - r for r < 1 and F = 0 for r > 

1. Longer-range forces, even forces extending to Infinity, can be treated 

with Ewald's Fourier-transform method, with a moderate Increase In computer 

time. In our sample calculation we choose fixed values of both temperature 

and strain rate. To start out we specify Initial conditions. We choose the 

time to = 0.6 and the strain rate € = 0.1, so that the Initial shear strain is 



0.06, as Indicated In Fig. 8. We arbitrarily choose a basic eel I of slde­

length L 2. As the calculation proceeds the particle coordinates wll I 

eventually leave the central 2x2 box. Provided that the accelerations of each 

particle are based on the nearest Images of Its two neighbors, as calculated 

In the three-step process below, It Is not necessary to replace the 

coordinates In the central box. Let us start with the arbitrary set of 

coordinates x, y and thermal velocities PxlPy shown In the Table. 

Table I. Initial configuration with L = 2 and s 0.06 at to = 0.6. 

2 3 

x -0.55 +0.21 +0.34 

Y -0.66 -0.09 +0.75 

Px +0.10 -0.20 +0.10 

py +0.10 +0.10 -0.20 

Fx -0.064 +0.017 +0.047 

Fy -0.012 -0.118 +0.130 

I,j 1,2 2,3 3,1 

Yl-yj -0.57 -0.84 +1.41 

n 0 0 -1 

YIJ -0.57 -0.84 -0.59 

x I-XJ+2n E: -0.76 -0.13 +0.77 

rij 0.95 0.85 0.97 

F +0.05 +0.15 +0.03 



To solve the equations of motion by difference-equatIon methods we need to 

calculate the forces on each of the particles. The sheared periodic 

boundaries must be taken Into account In calculating the nearest-Image 

separation of each of the three particle pairs (1,2; 2,3; 3,1). For each 

(I,j) pair the forces are calculated In three steps: 

1. 	 Calculate y(l) - y(j) and add to It nL, where n Is the Integer chosen 

to make the f I na I "nearest-l mage" separat Jon y I j Ire between -LIZ and 

+L12. 

2. 	 Calculate x(l) - x(j) + nL~t, to take Into account the offset of 

periodic Images separated by nL In the y direction at time t. Add to 

thIs the Integer multiple of the box length L which causes the final 

nearest-Image separation Xlj to lie between -L/2 and +L/2. 

3. 	 Accumulate the x and y forces for the nearest-Image separation just 

computed Into the forces on I and the forces on j. The same numbers 

are used, with opposite signs. 

This force calculation Is I I lustrated In the lower half of the Table. From 

the forces and thermal velocities the friction coefficient ~can be calculated. 

For the configuratIon In the Table, the "friction" coefflclent~, calculated 

from the forces and momenta according to Gauss' principle: 



Is -0.343. In this nonequl I Ibrlum problem, where velocities playa direct 

role In the equations of motion, It Is computationally convenient to solve 

first-order differential equations for particle coordinates and momenta rather 

than second-order coordinate equations. With the forces and friction 

coefficient known we have sufficient Information to advance the time using a 

standard first-order differential equation solver. The set of 12 equations 

corresponding to the homogeneous deformation In Fig. 8 Is the fol lowing: 

~(Il = [px(I)/m] + !y(ll y(l) [Py( 1)/m] 


px(l) Fx(ll - ~px(l) - ~Py(i) Py(ll = Fy(i) - ~py(l) 


for I = 1, 2, and 3. By taking into account the fixed center of mass and 

fixed kinetic energy these 12 equations could be reduced to seven, but it Is 

simpler to Integrate the ful I set. The Inevitable drift In kinetic energy due 

to finite computational accuracy, can be offset by occasional rescaling of the 

velOCity. Simultaneously, we accumulate the energy and pressure tensor, and 

the probability distributions In space and velocity. The resulting ~ 

configuration, at to + dt, then replaces the Initial condition. We repeat the 

integration process by returning to step I above. Fluctuations In cumUlative 

1/2averages fal I off as (t - t o,- as the averages stabli Ize. The shear 

viscosity Is obtained by dividIng the long-time steady value of the shear 

stress -Pxy ' by the strain rate~: n = -Pxy/~. 
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