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The thermal conductivity of a monatomic face-centered-cubic lattice has been calculated over a 
range of temperatures from one-twentieth to one-half the melting temperature. An inverse-twelfth­
power "soft-sphere" potential was used to represent the interatomic forces. We have examined, 
quantitatively, the approximations involved in deriving the Peierls phonon-transport expression for 
the thermal conductivity and have determined the temperature range over which it is useful. This 
has involved extensive comparisons with the formally exact Green-Kubo method, using molecular 
dynamics to generate the phase-space trajectories. At low temperatures, the relaxation processes in 
a crystal can be described in terms of phonon lifetimes. We have calculated the lifetimes of all the 
phonon states of 108-, 256-, and 864-particle classical crystals, with periodic boundaries, by molecu­
lar dynamics and by anharmonic perturbation theory. These lifetimes were then used to estimate 
the thermal conductivity.~, 

I. INTRODUCTION 

The thermodynamic and transport properties of anhar­
monic crystals are generally described in terms of the in­
teractions between phonons. 1 The anharmonic forces 
cause the phonon spectrum to shift and broaden, so that 
the normal-mode amplitUdes are no longer purely periodic 
functions of time. If the anharmonic interaction is small, 
so that the lifetime of a phonon state is many vibrational 
periods, the normal-mode amplitudes can be written as2 

(1.1) 

where ltJ is the unperturbed hannonic frequency, and .6. 
and r are the frequency shift and linewidth. These line 
shifts and linewidths depend on the thermodynamic state 
of the crystal and can be measured by a variety of experi­
mental techniques, of which the most powerful is neutron 
scattering.3 A comparison of theoretical and experimental 
line shapes provides a detailed check on proposed inter­
molecular forces. 

Transport properties of solids can be estimated from 
the phonon lifetimes,4 which we define by 

'" <on (t)on( 0) )dt
']"= -"'-'J_____..~____ (1.2) 

<(on 

where n, proportional to Q"Q, is the phonon occupation 
number, and on indicates the f1uctuation of n from its 
equilibrium value. It can be seen that the lifetime and 
linewidth are simply related 

(1.3) 

Despite the fact that there are well-known fonnulas, 

both classical and quantum, for the phonon line shifts and 
linewidths,I-3 they have never been evaluated for enough 
normal modes to enable a definitive calculation of the 
thennal conductivity to be made. Calculations of phonon 
line shapes are generally restricted to a few symmetry 
directions.3•5•6 Analytic estimates for the thermal conduc­
tivity, obtained by approximating the Brillouin-zone 
sums,7.8 differ by more than 50% for the inverse-twelfth­
power potential. 

A formally exact method of relating transport coeffi­
cients to the decay of fluctuations in microscopic fluxes 
has been described by Green and Kubo.9 Numerical re­
sults from molecular-dynamics simulations are available 
for fluids of particles interacting with hardlO and soft! 1 

forces. The molecular-dynamics method is not restricted 
to small amplitude displacements of the particles. It is 
therefore ideal for investigating deviations from the in­
verse temperature dependence of the thermal conductivity, 
'A, predicted by classical phonon perturbation theory .4, 7,8 

In the first part of this work, we compare the autocorrela­
tion function and resulting thermal conductivity derived 
from the exact microscopic heat fluX,12 with the approxi­
mate formulation, valid only at low temperatures in terms 
of phonon energies and group velocities.4

,13 This enables 
us to determine the range of validity of the Peierls expres­
sion for the thennal conductivity as a function of tem­
perature or rms displacement. 

We have calculated, from our molecular dynamics 
simulations, the coefficient, limT _o('AT) that describes the 
low-temperature thermal conductivity of classical crystals. 
This can be compared with theoretical calculations based 
on the Peierls theory of thermal conduction.4

,13 We have 
compared our molecular-dynamics-based result with ap­
proximate theories/' s and more rigorous estimates based 
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on calculating phonon lifetimes for all the normal modes 
of finite-size crystals and extrapolating to the thermo­
dynamic limit. The phonon lifetimes were calculated by 
molecular dynamics and anharmonic perturbation theory. 

The calculations described in this work were carried out 
for a monatomic face-cenTered-cubic crystal. The inter­
particle forces were derived from a pairwise-additive 
inverse-twelfth-power potential, 

(l.4) 

truncated beyond the second neighbors. For this poten­
tial, there exists a corresponding states principle linking 
thennodynamic or hydrodynamic states described by the 
same dimensionless parameter 

(Na3/V2'v)(€/ksTlI/4. 

For instance, the scaled thermal conductivity AT-2I3 is a 

function of x only.14 For ease of comparison with 

theoretical results we ignore this scaling and treat € and a 

as independent variables. The reduced density Na3/VlV 


. is equal to unity throughout this work, and the melting 

temperature at this density, Tm' is 2.29c/kB • 14 

II. HEAT FLUX AND THERMAL CONDUCTIVITY 

A general expression for the thermal conductivity, first 
derived bv Green and Kubo has now been obtained in 
many different ways.9 The conductivity Ais related to the 
decay of equilibrium fluctuations of the microscopic heat 
current, q, 

v J,"" (2.1)f.= --, \qxU)qx(O) )dt , 
kBT~ 0 -. 

where V is the volume, T is the temperature, and kB is 
Boltzmann's constant. We will indicate how the expres­
sion for the thermal conductivity of crystalline solids de­
rived by Peierls,4. 13 can be obtained from the Green-Kubo 
expression under certain approximations, valid at low 
temperature. 

For a classical system of point masses, interacting via 
pairwise-additive forces, a microscopic expression for the 
heat flux has been derived by Irving and Kirkwood,12 as­
suming that half the pair interaction energy can be associ­
ated with each particle. If the temperature gradient is 
slowly varying over a distance corresponding to the range 
of interparticle forces, then the heat flux is independent of 
any reasonable method of localizing the potential energy. 
Irving and Kirkwood's prescription leads to an expression 
for the heat flux q in terms of the relative coordinates, 
f m., and forces. F'1ln, between pairs of particles, and the 
individual panicle velocities v m' 

++ 2: [<Pmn(vm+v,,)+Fmn,(vm+vnlrmIlJ· 
m>n 

(2.2) 

This expression can also be derived, III an analogous 

way to the momentum flux or pressure tensor, from the 
"heat theorem,"!) 

(2.3) 

where em is the energy associated with particle m. Since 
there is negligible macroscopic particle diffusion in a crys­
talline solid, and since small fluctuations in the particle 
coordinates cannot cause energy transfer over macroscop­
ic distances and times, the heat theorem for a solid is sim­
ply 

(2.4) 
m 

where r~ indicates the average coordinate of particle m. 
This leads to an alternative and simpler expression for the 
heat current 

qV=+ .2 (vm+vn)'Fmllr~n (2.5) 
m>n 

Similar expressions havf been derived for the pressure and 
elastic constants. 16 It st.ould be noted that no assumption 
of small displacements is made in deriving Eq. (2.5); only 
the absence of particle diffusion is required. Numerical 
checks have shown that thermal conductivities obtained 
using Eq. (2.5) are identical to those obtained using Eq. 
(2.2) though the instantaneous (t =0) current fluctuations 
are different. 

If the interparticle potential is expanded in a power 
series in the relative displacements, umn • the first non van­
ishing contribution to the heat flux, quadratic in the dis­
placements is, from Eq. (2.5). 

(2.6) 

where V V <Pmn is the force-constant matrix, and r~1I is the 
average separation vector. Thermal conductivities calcu­
lated with this heat flux are strictly valid only at low tem­
peratures. 

If the particle displacements are expanded in a set of 
normal modes with amplitUde Q and polarization €, then 
for a crystal of N atoms of mass m, with a fixed center of 
mass, enclosed by periodic boundaries, 

ik.·rO 
U -(m ''') 1/2 ~Q,,c,e r m (2.7)m - lV A..tti lC' , 

where the sum is over the discrete set of (N 1) vectors 
and three branches contained in the first Brillouin zone. 
It is then straightforward to show that the approximate 
expression for the heat flux in Eq (2.6) is equivalent to the 
formula first derived by Peieris,4,13 

(2.8) 

where (iJi and Vi are the frequency and group velocity and 
ni, which has units of action, is related to the usual defi­
nition of the phonon occupation number, nocc , 
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(2.9) 

This definition makes for a simple correspondence be­
tween quantum and classical results, since the energy as­
sociated with a particular mode is nw in both cases. In 
Sec. IV we compare numerical results for the thermal con­
ductivity using the three expressions for the heat flux q, 
qO, and qP. 

. f hi" 4 13 .The Peierls expresslOn or t erma conductIvIty' IS a 
simplification of the Green-Kubo result, obtained by sub­
stituting the approximate phonon heat flux, qP, with the 
result 

p 1 r '" A e= 2 2,WiWrVj'Vr) , (nj(t)nr(O)dt. (2.10) 
3VkB T i,i' 0 

Since the ensemble-averaged heat current is zero, we can 
replace the occupation numbers by their fluctuations, on/. 
If the correlation between different phonon states 
(ni(t)ni'(O)) is ignored, then the conductivity can be writ­
ten in the form derived by Peierls 13 

kB 2
-'5'v· r· (2.11)
3V7' I 

which follows from the definition of the phonon lifetime 
(1.2l and the classical thermodynamic fluctuation formula 
((8n;)2) =(kB T Iw; )2. 

III. THERMAL CONDUCTIVITY: 

NUMERICAL RESULTS 


We have calculated by molecular dynamics the thermal 
conductivity for the inverse-twelfth-power potential over 
a range of temperatures up to about one-half the melting 
temperature, with two goals in mind. First we wished to 
find the coefficient of the inverse temperature dependence 
that characterizes the low-temperature thermal conduc­
tivity of classical crystals. Second we wished to determine 
deviations from the low-temperature T -I behavior caused 
by higher-order anharmonicities. These deviations occur 
in the heat current itself, beginning with terms propor­
tional to the third derivative of the potential, and in the 
dynamics, beginning with linear terms proportional to the 
sixth derivative of the potential together with terms in­
volving products of lower-order derivatives. Although 
both types of deviation must be included simultaneously 
for a systematic expansion of the conductivity in powers 
of the temperature, it is of theoretical interest to examine 
them separately. We compare thermal conductivities ob­
tained using the exact microscopic heat flux q, with those 
obtained fr~m the quadratic approximations to the heat 
nux q'l and qP. 

Heat nux autocorrelation functions were obtained at 
temperatures (k B TIE) near 0.1, 0.2, 0.5, and 1.0 for crys­
tals sizes from 108 to 864 panicles. The correlation func­
tions were averaged over run times of 600~10000 
(ma.2 16)112 (after equilibration) or about 2400~40000 
Einstein (singie-particle) vibrational periods. The classical 
equations of motion were numerically integrated by an or­
dinary differential equation solver17 which maintained the 
energy conservation to about 10-4NkB T. The phonon oc­
cupation numbers, used in calculating the phonon heat 
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FIG. 1. Heat flux autocorrelation functions of q, qO, and qP 
for N = 108 and T=0.546€/kB • Only the initial portions of the 
correlation functions are shown. 

flux qP were obtained by a spatial Fourier analysis of the 
instantaneous particle coordinates and velocities. 

Heat flux autocorrelation functions are illustrated in 
Fig. 1 at a temperature kBT /E=0.55. The atomistic rep­
resentations of the heat flux, (2.2) and (2.6), result in oscil­
latory correlation functions, caused by the rapid transport 
of energy back and forth over microscopic distances, by 
the atomic vibrations of the lattice. These fluctuations 
are averaged out by transforming to a phonon basis, re­
sulting in a monotonic decay of the heat current, as might 
be expected macroscopicaIly. In fact, the phonon heat 
flux correlation function (qP( t) -qP(O) neatly bisects its 
atomic counterpart (qo( t) 'q0(O) ), and the integrals of 
these two correlation functions are identical within the 
statistical errors. The atomistic correlation functions 
have a similar time dependence; the major anharmonic 
contribution to the conductivity coming from the larger 
instantaneous fluctuations of the exact heat flux, (q.q). 

The average long-time decay of these correlation func­
tions can be most easily seen in the phonon heat flux 
correlation function which is shown at the two extreme 
temperatures in Fig. 2 for N = 108 and 256. At high tem­
peratures, there is little difference between the correlation 
functions for N 108 and 256, but at low temperatures, 
heat currents persist much longer in the smaller system. 
This is due to the reduced number of phonon scattering 
mechanisms. 

The various estimates of the thermal conductivity are 
shown in Table 1. We see that the Green-Kubo 
molecular-dynamics method is an effective route to the 
thermal conductivity of classical crystals even at low tem­
peratures. Run times of 1000(ma2/€)112 were usually 
sufficient to reduce the statistical errors to less than lO%· 
The number dependence of the thermal conductivity 
arises fr;om the different long-time decay rates of the heat 
flux autocorrelation functions (Fig. 2), and is surprisingly 
small. Although the thermal conductivities obtained with 
N = 108 and 256 are significantly different at low tem­
peratures, the conductivities for N =256 and 864 are 
similar. This small number dependence is probably due to 
two canceling effects_ As the crystal gets larger, lowe! 
frequency phonons, which generally make significant coO­

. 
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Long-time behavior of the normalized phonon heat 
flux correlation functions at approximate temperatures of 0.1 

A comparison of results for N = 108 and 256 is 

tributions to the conductivity, are permitted. On the oth­
er hand, the increased number of scattering possibilities 
decreases the phonon lifetimes. 

Nonequilibrium molecular-dynamics simulations of 
thennai conduction using hot and cold reservoirs were 
found to be impractical for three-dimensional crystals.18 
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FIG. 3. Thermal conductivity from equilibrium Green-Kubo, 
nonequilibrium molecular dynamics, and phonon perturbation 
theory. The melting temperature is indicated by the vertical ar­
row labeled Tm • 

The phonon scattering was dominated by boundary ,ef­
fects. Homogeneous nonequilibrium simulations worked 
much better and conductivities could be obtained with 
about 10% accuracy for the high-temperature solid 
phase. 14 These results, together with some more recent 
nonequilibrium simulations, are compared with the equili­
brium Green-Kubo results in Fig. 3. This comparison in­
dicates that the two methods calculate similar thermal 
conductivities, though the nonequilibrium method is less 
precise because the conductivity does not vary in any sim­
ple way with the external field used to simulate a tem­
perature gradient.' 

The thermal conductivities derived from the harmonic 

TABLE I. Thermal conductivity of classical face-centered-cubic crystals interacting via an inverse­
twelfth-power potential. The thermal conductivities derived from each heat flux are shown together 
with the temperature and run time tr • The statistical errors are estimated to be about 5% for N = lOS, 
10% for N=256, and 15% for N=864. A*=Aa2(m/€)1!2/kB' 

0.103 108 10000 3S0 360 365 0.95 
O.IDI 	 256 1000 280 

/
0.208 108 10000 203 lSI 180 0.S9 
0.205 256 1000 140 125 	 0.89 
0.204 864 600 150 135 	 0.90 

0.546 108 8000 53.2 41.7 41.4 0.78 
0.534 256 900 45 36 	 0.80 

1.191 108 5000 23.2 14.4 13.4 0.62 
Ll42 256 1000 27.7 16.7 16.0 0.60 

http:phase.14
http:crystals.18
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heat fluxes qO and qP are in agreement with each other, 
and vary as T- 1 at low temperatures. Our best estimate 
of the coefficient limT~0()..0T) is 26± HE3Ima4 )112. 

Theoretical estimates of the thermal conductivity have 
been given by Julian7 and Klemens.s Julian calculates the 
Brillouin zone sums that occur in the Peierls formula in 
an approximate way, and for the inverse-twelfth-power 
potential predicts that ),oT = 44( E31m a4 )1/2. Klemens's 
theory, based on the Debye model, is in much better 
agreement with our molecular-dynamics results and gives 
a value of )..°T=28(E3Ima4 )1/2. We have also calculated 
this coefficient from first principles, using the Peierls for­
mula (2.11), and lifetimes determined from phonon 
perturbation theory (see Sec. IV). The result 
},OT= 25(E3 Ima4 ) 112, is in good agreement with our 
molecular-dynamics data (see Fig. 3). 

At high temperatures, T>O.5ElkB, the conductivities 
)..0 and )t, calculated using quadratic approximations to 
the heat flux decay more rapidly than T- 1, due to the ef­
fect of higher-order anharmonicities on the phonon life­
times. However, if anharmonic contributions to the heat 
flux are included, the conductivity).. falls off as approxi­
mately T- 1 up to temperatures of IElkB. It can be seen 
in Fig. 3 that the thermal conductivity).. follows the low­
temperature perturbation theory prediction over this range 
of temperatures. Beyond a temperature of IElkB the con­
ductivity decreases more slowly than T- 1

• The ratio 
)..°1)" is about 0.6 at kB TIE = 1. These results suggest 
that extensions of the low-temperature Peierls theory for 
the thermai conductivity should include the higher-order 
displacement contributions to the heat flux and dynamics 
simultaneously. 

IV. PHONON LIFETIMES 

We can calculate phonon lifetimes from Eq. (1.2) using 
the phonon occupation numbers obtained by Fourier 
analyzing the instantaneous particle displacements and ve­
locities. At low enough temperatures we expect to make 
contact with classical phonon perturbation theory. We 
have calculated phonon lifetimes for 108 and 256 atom 
crystals at four temperatures between 0.1 and l.OElkB • 

We estimate that the statistical errors in the phonon life­
times are between 10 and 30%. A harmonic phonon basis 
was used, and the thermal conductivities obtained using 
the Peierls formula (2.8) agree with our Green-Kubo re­
sults for ),0 and )..p. Of course, at high temperatures these 
conductivities are considerably smaller than the "exact" 
result, )... 

Phonon lifetimes calculated by molecular dynamics ex­
hibit a complex dependence on the magnitude and direc­
tion of the wave vector k. As an example, phonon life­
times in the [100] and [110] directions are shown in Fig. 
4, as a function of the magnitude of k. The boundaries of 
the first Brillouin zone are at kal=V21T and ka=311'!2 
for the [100] and (110] directions, respectively. A [110J 
phonon lying outside the first Briliouin zone with ka=21T 
IS equivalent to a zone-boundary [100] phonon, 
ka = 1/211'. The longitudinal and in-plane transverse 
modes of the [110] phonon form the degenerate transverse 
modes of the [100] phonon and the out-of-plane trans­

10I' ~....,.----...,----., r-----o-'---.---"-"--,
(110) directio~ Tke!'; 0.2 
N = 256 Transverse 

;&- /On plane) 

E 5 ' Transverse 
~ I (out of plane) 

.. ITransverse 

O~~-I I 
o 	 0.25 0.50 0.15 

k 01V211') k 0/(2,,) 

FIG. 4. Phonon lifetimes as a function of k in the [100] and 
[110] directions, for N =256 and T=0.2€/kB • The solid lines 
are drawn as a visual aid to identify the various branches. In 
the [110] direction the two transverse modes are not degenerate 
and have different frequencies for motion in the plane of the k 
vector and perpendicuiar to this plane. 

verse [IIOJ mode becomes the longitudinal [100J mode. 
The lifetimes shown in Fig. 4 are consistent with this 
symmetry. 

The temperature dependence of the phonon lifetimes is 
illustrated in Fig. 5 again for [100] and [110] phonons. 
At low temperatures, the lifetimes are proportional to 
T -1 as expected from classical phonon perturbation 
theory. This inverse temperature dependence character­
izes the lifetimes of long-wavelength phonons over the 
temperature range we have studied. However, the life­
times of higher- k phonons fall off more rapidly than 

r--~[~lO~oT~~~l '--[10'O~I""k-a~=~IT""'/v~f2" r--[.....;O...,~-I'~k~~=..,.."",.'1 ] 

10 " • 
'Q 

IT12,J'l 3"12,J'l 
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"" " '" .
" 0" 
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f 
.. 0 •• TransverS8 Un plane I 

'. (110] ka = ,,/2 

b .. 
" . ~'" " .1:< "6." ." '." '.'.f; '. 

"" , 

Tke /" 

FIG. 5. Temperature dependence of the phonon tifetimes, in 
the [iOO] and [110] directions for N =256 at various values of 
k. The solid lines are the results of anharmonic perturbation 
theory for N = 256. 
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is not possible to quantify these deviations with 
available statistics. 

lines, with a slope of - 1, in Fig. 5 are the 
of classical phonon perturbation l,3 theory for 

:=:256. The frequency shifts and linewidths were calcu­
from the usual perturbation-theory expressions, 1,3 

the lifetime was obtained from the linewidth via Eq. 
aD plying anharmonic perturbation theory to the 

of frequency shifts and linewidths, we have 
the convemional representations of the delta function 

principal value3.5 

(4.1) 

I · (j) 
1m 2 2 ' 

.1",-.0 + (j) +(6,(j)) 

lhe problem reduces the choosing an appropriate 
corresponding to a smearing out of the har­

phonon reference spectrum, which is a sequence of 
functions at the phonon frequencies. If f1(j) is too 
the details of the phonon spectrum are washed out; 

L)O small, there is very little overlap between ad­
nhonon states. An alternative method,6 involving 

over small regions of the Brillouin 
,:; not appiicable to finite-size crystals. 

We have found empirically that a narrow range of 
Gr ':"o, of the order of 0.05 (E/m(j2)1I2, brings the 

·""""',,rl"'tion thc-ory and molecular-dynamics results for 
lOS and 256 into quite good agreement, especial­

the statistical uncertainties in the 
results. A suitable criterion for 

="'·I<:,:n" !iw turns out to be minimizing the sum of the 
of the frequency shifts, which corresponds in a 
way to the least sensitive choice of 6,(j). The per­

rheory results shown in Figs. 3 and 5 adopt this 

predictions of classical penurbation theory can be 
in an overall way by comparing the thermal con­
calculated via the Peierls formula, Eq. (2.11), us­

the perturbation-theory lifetimes, with the molecular­
results for the conductivities AO or "p. These re-

are shown in Table II together with the appropriate 
minimizing the variation in the frequency 

and the sensitivity of the conductivity to the choice 

of f1(j). It can be seen that the molecular-dynamics and 
perturbation-theory results are in good agreement for the 
larger crystals, and that f1(j) is steadily decreasing with in­
creasing N, as is the sensitivity of the conductivity to the 
choice of f1crJ. These results suggest that we have found a 
useful procedure for applying phonon perturbation theory 
to finite-size crystals. 

It would be desirable from both theoretical and numeri­
cal standpoints to develop a theory that does not require 
these empirical manipulations. Since anharmonic interac­
tions can bring a crystal of almost any size to thermo­
dynamic equilibrium, theories that require a continuous 
phonon spectrum are incomplete. Numerical work on lat­
tice vibrations would be greatly assisted if direct 
perturbation-theory methods for calculating phonon life­
times in finite-size crystals were available. 

V. CONCLUSIONS 

The equilibrium Green-Kubo method is currently the 
most effective route to the thermal conductivity of classi­
cal crystals, and can be applied over a wide range of tem­
peratures. Long runs are necessary to obtain good statis­
tics, but this is compensated for by the weak number 
dependence; a few hundred particles are sufficient for 
temperatures down to one-tenth of the melting tempera­
ture. Nonequilibrium molecular dynamics works poorly 
at low temperatures, but is consistent with Green-Kubo at 
temperatures greater than one-half melting. 

At low temperatures the Green-Kubo results are in 
agreement with phonon perturbation theory. At one-half 
melting, the Peierls calculation of the conductivity gives 
about one-half the correct value; the remainder is account­
ed for by contributions of higher-order displacements, cu­
bic and beyond to the heat flux. However, higher-order 
anharmonicities cause the phonon lifetimes to decay more 
rapidly than T-I, and the net effect is that the conduc­
tivity can be characterized by an inverse temperature 
dependence up to about one-half melting. The coefficient 
of the inverse temperature dependence is quite accurately 
predicted by Klemens's theory,S but not by Julian's.7 

A difficulty arises in applying anharmonic 
perturbation-theory calculations to finite-size crystals. 
The harmonic reference spectrum must be smeared out to 
cause some overlap between adjacent phonon states. We 
have found a simple empirical rule for assigning a width 

TABLE II. Low-temperature thermal conductivity. The slope of the classical T- 1 dependence of 
the conductivity is calculated by molecular dynamics (MDl and perturbation theory (PTJ. The 
mo]ecuiar-dynamics results are derived from the Green-Kubo calculations using the quadratic approxi­
mation to the heat flux, qQ, The empirical width of the reference phonon spectrum used in the pertur­
hcniou theory is shown together With the sensitivity of the conductivity to the choice of ~IV. The highest 
normal-mode frequency in the crystal is about 35(t/m 0'2)1/2. 

Iv (A°Th,w(mO'4 /i!?)Ii2 (APeT lvr(m O'4/( 3)112 ~1V(m 0'2/£)1/2 

108 36 27.2 0.80 8 
256 25 25.6 0.55 9 
:364 27 25.3 0.25 4 
~~::. 
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