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Recent atomistic simulations of irreversible macroscopic hydrodynamic flows are illustrated. An 
extension of Nose's reversible atomistic mechanics makes it possible to simulate such non­
equilibrium systems with completely reversible equations of motion. The new techniques show that 
macroscopic irreversibility is a natural inevitable consequence of time-reversible Lyapunov­
unstable microscopic equations of motion. 

1. 	ATOMISTIC SIMULATIONS OF MACROSCOPIC FLOWS 2. REVERSIBILITY AND LYAPUNOV INSTABILITY OF 
FAR FROM EQUILIBRIUM MICROSCOPIC EQUATIONS OF MOTION 
Atomistic simUlations have been applied to The meaning of reversibility in atomistic 

a host of macroscopic problems--fracture, equations of motion is clear. If we consider 
fragmentation, and penetration mechanics l ,2, snapshot values of particle coordinates q at 
shockwave compression3, turbulence4, and times ndt, obtained by integrating the 
thermally-driven gravitational instability5. equations of motion, then any set n = 0, ±l, 

See Figure 1. Such work can lead to modified ±2, ±3, ...• satisfying the equations of 

macroscopic descriptions which include size­ motion with a positive timestep dt is also a 
and time-dependent constitutive information solution with dt negative. It is fascinating 

(surface tension. viscosity. thermal that motion equations with this· reversibility 

diffusivity. and the like) for the same property underlie the macroscopic irreversi ­

atomistic model. Besides the size dependence, bility described by the Second Law of 

the main discrepancy between the atomistic Thermodynamics. 
simulations and their macroscopic analogs is The observed irreversibility of macroscopic 

the relatively large fluctuation size, of flows is a consequence of the microscopic 
order N-1/2. The number of particles N is Lyapunov instability inherent in the 

typically somewhat less than a million. underlying reversible equations of motion. 

*This work was supported by the United States Army Research Office at Davis. Work performed under 
the auspices of the United States Department of Energy by Lawrence Livermore and Los Alamos 
National Laboratories under Contracts W-1405-ENG-4B and W-1405-ENG-36. 
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The instability is described in terms of the 

Lyapunov "spectrum", that is, the set of 

N =.14,491 
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FIGURE 1 

Nonequilibrium simulations of fragmentation, 

turbulence, and Benard instability. These 

illustrations are taken from References 1, 4, 
and 5. 
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FIGURE 2 

Lyapunov spectrum for a 4-body dense fluid. 

The full curve is a Oebye spectrum. 


Lyapunov exponents, ~l' ~2' ~3' .... These 
Lyapunov exponents describe the 0 orthogonal 

growth rates of infinitesimal phase-space 

hypervolumes centered on a moving phase-space 

trajectory poi nt. The largest I.yapunov 

exponent describes the exponential growth rate 

of a one-dimensional "volume"--that is, the 

rate at which two neighboring phase-space 

points separate. The sum ~l + ~2 describes 
the rate at which a two-dimensional area 

--defined by three neighboring phase-space 

FIGURE 3 

Schematic illustration of a far-from­

equilibrium Newtonian bulk region driven by 

two reversible Nose-Hoover heat revervoirs. 
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pOlnts--grows, and so on. The Lyapunov 

spectrum has a shape similar to the Debye -
spectrum of solid state physics6. See 

Figure 2. 
s) Reversible equations of motion describing 

nonequilibrium systems have been developed 

recently. Figure 3 shows a bulk Newtonian 

region driven by two reversible Nose reservoir 

regions. To enforce boundary conditions--that 

is, specifying the temperature, stress, or 

stream velocity in selected boundary regions 

--reversible friction coefficients Ci are 

added to the Newtonian equations of motion. 

For a particle in the ith reservoir region: 

mi:j F(q) - Cimq. [Region i] (1) 
In the remaining unconstrained bulk system 

the usual Newtonian equations of motion, mq 

F(q) are used. The complete set of equations 

of motion, describing the bulk and the 

boundary regions, is time reversible. In a 

reversed motion each of the boundary friction 

coefficients Ci changes sign. Three separate 

derivations 7-9 have been given for this 
te 

generalization (1) 	of Newtonian mechanics: 
(i) They are a consequence of a scaled-time 

evolution of trajectories following Nose's 

canonical-ensemble Hamiltonian. (ii) They are 

a consequence of the application of Gauss' 

Principle of Least Constraint to reservoirs 

constrained to fixed kinetic energy (temper­

ature). (iii) They are the simplest equations 

of motion which generate the canonical 

phase-space distribution. 

The explicit equilibrium equations (1) were 

developed by Nose7. The isokinetic Gaussian 

version had already been applied implicitly 

much earlier by Ashurst lO to viscous flows and 
y 	 heat flows. The reversibility of the latter 

nonequilibrium friction-coefficient equations 

of motion was first explicitly recognized by 

Hoover, Ladd, and Morana at about the same 

time as Nose's equilibrium work. Independently 

Denis Evans developed the same nonequilibrium 

motion equations. Now these same equations 

are being used primarily to control non­

equilibrium simulations of hydrodynamic flow 

processes. 

3. IRREVERSIBILITY 	 OF NONEQUILIBRIUM SYSTEMS 

The Nose-Gauss equations of motion are 

time-reversible. But, these equations have 

amazing consequences for nonequilibrium prob­

lems. For a system with two or more boundary 

regions, there are two or more different 

velocity or temperature constraints, with 

corresponding friction coefficients, as shown 

in Figure 3. In what follows we consider two 

(hot/cold) reservoirs with (NH/NC) degrees of 

freedom, friction coefficients (CH/CC) , 
temperatures (TH/TCl, and response times 

(~H/~C)' In this case the Nose-Hoover 
Hamiltonian "H" can be proved to be a constant 

of the motion: 

"H" = tp2/2m + ~ + 	NHkTH(THCH)2/2 

+ NCkTC(~CCC)2/2 	 (2) 

+ It[NHkTHCH + NckTCCCJdt' . 
Let us assume the existence of a nonequil 

ibrium steady state, so that the kinetic 

energy is finite. It follows that the two 

time integrals in (2), representing the heat 

transfers at the hot and cold temperatures, 

cancel. It is also clear that the time­

averaged D-dimenslonal-phase-space-volume 

strain rate <dlnVo/dt> cannot be positive in 
the steady state. This gives the relations 

<dlnVo/dt> = t~i NHCH-NCCC < O. (3) 
Equations (2) and (3) taken together imply 

that the hot friction coefficient is negative 

and the cold one positive, in agreement with 

the Second Law of Thermodynamics. This very 

general conclusion follows from the assumed 

existence of a steady state. An alternative 
description of this result is that microscopic 

stability (existence of a steady-state 
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solution of the equations of motion) implies 
macroscopic stability (positive transport 
coefficients in agreement with the Second Law 
of Thermodynamics). It is the deterministic 
form of the reservoirs that makes it possible 
to establish this interesting result. Thus 

the methods designed to model systems far from 
equilibrium produce, as a fringe benefit, an 
understanding of the Second Law of Thermo­
dynamics". 

4. 	 FRACTAL ATTRACTORS AND IRREVERSIBILITY IN 
NONEQUILIBRIUM FLOWS 
From the perspective of Lyapunov instabil ­

ity, the generalized Nose mechanics suggests 

the collapse of phase-space probability onto ·a 
fractal attractor subspace with dimensionality 
0-00 in a time of order the collision time. 

Studies of this collapse, for one-body field­
driven diffusion12 ,13, inspired by equilibrium 

work on a single one-dimensional oscil 
lator9,14,15, were sufficiently novel that the 

first comprehensive descriptions were 
personally rejected by editors of Physical 
Review Letters and the Journal of Statistical 
Physics16 . That work12 ,13 demonstrated that 

the fractal attractor dimensionality of a 
steady nonequilibrium state is less than the 
equilibrium dimension D. Because the volume 

of a (O-oO)-dimensional attractor in a 
O-dimensional space is precisely zero, the 

volume of the time-reversed repel lor (with 

p~ -p and C~ -C) is likewise zero. Thus the 
probability of observing a repel lor state, 

which would violate the Second Law of 

Thermodynamics. is exactly zero. 
The steady-state attractor's dimensionality 

loss bO can be estimated: 

bO = S/('~'l k) . (4) 

~1 is the largest Lyapunov exponent and k is 

Boltzmann's constant. Applied to the Benard 
problem at the base of Figure 1 the dimension­

a1ity loss would be about 50. The loss 00 is 
extensive, and becomes of order Dwhen the 

gradients approach those found in strong 
shockwaves. 108/cm for QlnT. and 1012 Hz for 
Qu. 

The applications of these new ideas, and 

their quantum analogs, are under active 
investigation. Prospects for nonequilibrium 

simulation are more exciting than ever before. 
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