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Diffusion in a Periodic Lorentz Gas 
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We use a constant "driving force" F a together with a Gaussian thermostatting 
"constraint force" F,. to simulate a nonequilibrium steady-state current (particle 
velocity) in a periodic, two-dimensional, classical Lorentz gas. The ratio of the 
average particle velocity to the driving force (field strength) is the Lorentz-gas 
conductivity. A regular "Galton-board" lattice of fixed particles is arranged in a 
dense triangular-lattice structure. The moving scatterer particle travels through 
the lattice at constant kinetic energy, making elastic hard-disk collisions with 
the fixed particles. At low field strengths the nonequilibrium conductivity is 
statistically indistinguishable from the equilibrium Green-Kubo estimate of 
Machta and Zwanzig. The low-field conductivity varies smoothly, but in a com- 
plicated way, with field strength. For moderate fields the conductivity generally 
decreases nearly linearly with field, but is nearly discontinuous at certain values 
where interesting stable cycles of collisions occur. As the field is increased, the 
phase-space probability density drops in apparent fractal dimensionality from 3 
to 1. We compare the nonlinear conductivity with similar zero-density results 
from the two-particle Boltzmann equation. We also tabulate the variation of the 
kinetic pressure as a function of the field strength. 

KEY WORDS: Gaussian thermostat; two-dimensional, periodic Lorentz gas; 
hard disks; conductivity; fractal. 

1. I N T R O D U C T I O N  

T h e  s imples t  k n o w n  n o n e q u i l i b r i u m  s t eady-s t a t e  p r o b l e m  wi th  revers ib le  

e q u a t i o n s  o f  m o t i o n  is the  G a l t o n  b o a r d  (1'2) o r  L o r e n t z  gas  p r o b l e m  

(Fig.  1). A single p o i n t  pa r t i c l e  of  mass  m m o v e s  wi th  ve loc i ty  v a n d  

m o m e n t u m  p = rnv t h r o u g h  a r egu la r  la t t ice  of  f ixed sca t te re rs  o f  d i a m e t e r  

cr u n d e r  the  inf luence  of  two  ex te rna l  fields Fd and  F t .  An  e q u i v a l e n t  a l ter-  
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Fig. 1. Geometry of the Lorentz gas. A fixed scatterer particle with diameter a lies in a 
hexagonal cell of volume (3/4)l/2(V/Vo)a2=5Vo/4, where V0 is the close-packed volume, 
(3/4)ma 2. A point particle with speed v, mass m, and kinetic energy my2~2 = p2/(2m) scatters 
elastically from the curved surface of the fixed particle. The two angles �9 and 3 define a 
collision, c~ being measured relative to the field direction and fl being measured relative to the 
normal following the collision. 

native view of the dynamics results if two identical particles with mass 2m, 
diameter 0-/2, velocities +v/2, and momen ta  + p  move with appropriate  
periodic boundaries.  The constant  driving field 

F~=E 

generates a net velocity in the field direction. At the same time the time- 
varying thermostat t ing or constraining force Fc maintains the system at a 
constant  " temperature" (kinetic energy) and thereby makes a steady state 
possible: 

F(. = -~p; ~ = E(p~/m)/(pZ/m) 

It is necessary to introduce a constraint  force in order  to observe a 
steady nonequil ibrium state. In  the absence of a constraint  the thermal 
velocity p/m, by conservation of the total energy (p2 /2m) -  Ex, would have 
to vary as the square root  of the x displacement. With growing x 
displacement the acceleration due to the field, which is independent  of 
velocity, becomes negligible relative to the scattering accelerations, which 
are propor t ional  to the velocity. In  this long-time limit the low-field con- 
ductivity, which varies inversely as the velocity for hard disks, might be 
expected to describe the motion.  At long times the drift velocity (dx /d t )  
would then vary as x -1/2 and the resulting net displacement varies as the 
two-thirds power of time. In fact, the mot ion  resulting in the absence of 
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constraints is so irregular that we could not determine a quantitative 
power-law dependence of (dx/dt)  on x. 

Thus, a constraint force of some kind must be imposed in order to 
observe steady diffusion outside the linear regime. The friction coefficient 
could be based on Nos6 mechanics, a modification (2 47 of Hamiltonian 
mechanics readily applicable to the Galton board. But the resulting phase- 
space description would become more complex, involving five time-depen- 
dent variables {x, y, Px, Py, (} rather than the simpler set of three required 
by Gaussian dynamics. The present work is based on the simpler dynamics, 
Gaussian dynamics, the special case of Nos6-Hoover mechanics in which 
the relaxation time associated with the frictional thermostatting force -~p 
approaches zero. 

It is certainly not obvious, but it is at least plausible that this system 
will reach a nonequilibrium state with a nonvanishing current 
approximately equal to the linear-response-theory prediction worked out 
by Machta and Zwanzig. (5) But the numerical calculations summarized 
here show consistency with those earlier results together with topologically 
interesting behavior at higher field strengths where the mean velocity 
becomes of the order of the thermal velocity. 

The problem reduces to a three-dimensional one, with two coordinates 
{x, y} specifying the location of the scattering particle within a unit cell of 
the scattering lattice and the third coordinate 0 giving the angle 
corresponding to the direction of motion. This dimensionality can be 
further reduced from three to two by taking advantage of the integrability 
of the equations of motion between collisions. Thus, the steady-state 
probability density in the three-dimensional phase space is simply related 
to the steady-state two-dimensional probability density for collisions. In 
Section2 we describe the equations of motion that constitute the 
mathematical statement of this problem. The numerical solution is 
described in Section 3, with some of the analysis relegated to the Appendix. 
Our conclusions are contained in Section 4. 

2. M A T H E M A T I C A L  F O R M U L A T I O N  

We use Cartesian space coordinates, locating the moving point par- 
ticle at x and y with a polar velocity coordinate 0 giving the direction of 
motion relative to the x axis. Thus, the velocity components in the x and y 
directions are proportional to the cosine and sine of 0, respectively: 

(vx, Vy) = (px, py)/m = v(cos 0, sin 0) -- (p/m)(cos O, sin 0) 

Denoting the driving force or field Fa as the vector (E, 0) parallel to 
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the x axis and the isokinetic constraint force F~ as -~p,  we obtain the 
following first-order equations of motion for the scattering particle: 

2 = px/m = (p/m) cos 0 

= py/m = (p/m) sin 0 

D x = E + F x - ~ p x  

0 = - ( E / p )  sin 0 

Note that the "phase space" in which the motion occurs is only three- 
dimensional (x, y, and 0) because the kinetic energy is fixed. For more 
details the closely related references by Hoover (2'6) and Morriss (7) can be 
consulted. 

Figure 1 shows the Galton-board geometry. The triangular lattice can 
be conveniently broken up into either parallelogram or hexagonal cells. 
Here we use hexagons. The hexagonal cells have an axis of symmetry 
provided that the field direction is chosen to lie at any angle n~/6 relative 
to a lattice direction. Here we arbitrarily choose the field perpendicular to a 
row of fixed scatterer particles. Provided that the density of these particles 
relative to their close-packed density exceeds 3/4, there is no possibility 
that the moving point particle can avoid scattering. In the present work we 
arbitrarily choose a density equal to 4/5 the maximum close-packed den- 
sity. In the Machta-Zwanzig system of units, with scatterers of unit radius 
separated by a distance 2 + W, our density choice corresponds to a value 
for their W of x/5 - 2 = 0.236068. 

The equations of motion can be integrated analytically (6) to calculate 
the displacements Ax and Ay parallel and perpendicular to the field direc- 
tion during the time t: 

Ax = - ( p 2 / m E )  ln(sin 0/sin 00) 

Ay = -(p2/mE)(O -- 0o) 

t=  - (  p/ E) ln[ tan( 0/2 )/tan( 0o/2 ) ] 

With these results the "collisions" with the horizontal straight-line 
boundaries of the split-hexagonal cell shown in Fig, 1 can be calculated 
analytically. A highly accurate calculation of the collisions with the curved 
disk surface shown in the figure can be based on a rapidly convergent series 
expansion described in the Appendix. In this way it is possible to treat 
about 15,000,000 collisions per hour using a Cray-1 computer. 

The collision history can then be used to generate either of two 
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probability density functions, the phase-space density f ( x ,  y, O) or the sim- 
pler collision probability density g(e, tq) giving the probability of a collision 
with configurational angle of impact e and postcollisional direction of 
motion, relative to head on, described by the angle /~. These angles are 
defined in Fig. 1 and cover the ranges 0 < e < ~ and - ~/2 </~ < ~/2. For 
transient problems the full phase-space density f is required. For  a steady 
state the function g is sufficient. This is because the density at any point in 
phase space can be calculated from the density at the previous collision, 

[ ] f(O)/f(  - t) = exp (E/rnv) cos 0 dt 
- - t  

= exp [E(x(0) - x( - t))/mv 2 ] 

or the next collision 

f (O) / f ( t )=exp  [ ( -  E/mv) f f  cos O dt] 

= exp[ - E(x(t) - x(O))/mv 2 ] 

These useful results follow from the analog of Liouville's equation in the 
three-dimensional phase space: 

c?f/Qt + c~(f 2 )/c?x + O(f ~ )/@ + ~?(f O)/OO = 0 

The various derivatives in the nonequilibrium steady state for x and y in 
the streaming region between collisions are 

c32/c3x = @/@ = O, ~?0/~30 = -(E/rnv) cos 0 

From these 

df/dt = c~f/~?t + k ~?f/Ox + • Of/@ + 0 ~?f/~O = f ( E/mv } cos 0 

which gives directly 

f(t)/ f(O) = exp(E dx/mv 2) 

The relationship between the probability density in the full space 
f ( x ,  y, O) and the probability density at collisions g(cr follows from the 
observation that the collision rate at any angle e is proportional to the 
velocity component in the radial direction, (p/m) cos ft. Thus we have 

f ( x  = cos :~, y = sin c4 0 = ~ + fl) = g(c4 /?)/cos /} 



Table I. Conduct iv i ty  K as a Function of Field S t rength  for  a 
Triangular Lattice Lorentz Gas at 4/5 the Close-Packed Density  a 

Erna/p 2 E'co/p N rcp/ma Fmo/p <COS 2 O> 

0.1 0.030 4 x 107 0.0977 3.365 0.500 
0.2 0.059 4 • 10 v 0.0954 3.364 0.501 
0.3 0.089 4 • 107 0.0914 3.367 0.502 
0.4 0.119 4 • 107 0.0888 3.370 0.503 
0.5 0.149 3 • 107 0.0875 3.375 0.503 
0.6 0.178 3 • 107 0.0885 3.380 0.505 
0.7 0.208 3 • 107 0.0897 3.388 0.506 
0.8 0.238 3 • 107 0.0904 3.392 0.508 
0.9 0.267 3 • 107 0.0904 3.391 0.510 
1.0 0.297 3 x 107 0.0924 3.394 0.512 
1.1 0.327 3 x 107 0.0930 3.397 0.513 
1.2 0.357 3 x l0 T 0.0936 3.398 0.520 
1.3 0.386 3 x 107 0.0920 3.396 0.525 
1.4 0.416 3 x 107 0.0912 3.406 0.527 
1.5 0.446 3 x 107 0.0892 3.409 0.533 
1.6 0.475 3 x 107 0.0855 3.412 0.535 
1.7 0.505 3 x 107 0.0815 3.419 0.536 
1.8 0.535 3 x 107 0.0799 3.434 0.536 
1.9 0.565 3 x 107 0.0788 3.446 0.538 
2.0 0.594 2 x 106 0.0771 3.456 0.539 
2.1 0.624 2 x 106 0.0747 3.474 0.542 
2.2 0.654 2 x 106 0.0739 3.495 0.543 
2.3 0.683 2 x 106 0.0729 3.512 0.545 
2.4 0.713 1 x 106 0.0715 3.536 0.547 
2.5 0.743 1 x 106 0.0721 3.550 0.550 
2.6 0,773 1 x 106 0.0729 3.561 0.555 
2.7 0.802 1 x 106 0.0739 3.554 0,560 
2.8 0,832 1 x 106 0.0746 3.559 0.565 
2.9 0,862 1 x 106 0.0738 3.561 0.567 
3.0 0,891 1 x 106 0.0734 3.554 0.574 
3.1 0.921 1 x 106 0.0730 3.550 0.582 
3.2 0.951 1 x 106 0.0725 3.544 0.588 
3.3 0.981 1 x 106 0.0735 3.542 0.595 
3.4 1.010 1 x 106 0.0717 3.522 0.609 
3.5 1.040 1 x 106 0.0752 3.525 0.618 
4.0 1.189 1 x 106 0.0654 3.396 0.665 
4.5 1.337 1 x 106 0.0589 3.192 0.691 
5.0 1.486 1 x 106 0.0575 3.159 0.706 
5.5 1.634 1 x 106 0.0546 3.067 0.723 
6.0 1.783 1 x 106 0.0827 2.562 0.744 
6.5 1.931 1 x 106 0.0492 2.808 0.753 
7.0 2.080 1 x 106 0.0364 2.892 0.764 
7.5 2.228 1 x 106 0.0414 2.976 0.771 
8.0 2.377 1 x 106 0.0395 3.124 0.776 
8.5 2.526 1 x 106 0.0424 3.137 0.782 
9.0 2.674 1 x 106 0.0485 2.704 0.782 
9.5 2.823 1 x 106 0.0333 3.084 0.795 

10.0 2.971 1 x 106 0.0484 3.000 0.796 

a N is the number of disk collisions, F is the collision rate, and % is the mean time between 
successive collisions at zero field. The conductivity is given by the average value of the 
velocity in the field direction divided by the field strength. In the two-particle view, with 
velocities + half the one-particle value, <v>/E would have half the tabulated value. 
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The steady-state pressure tensor can likewise be expressed in terms of 
and/3, taking into account that the collisions are isokinetic rather than 

isoenergetic, as is explained in Refs. 8 and 9. The kinetic contribution to 
PxxV(m/p2)= (cos 2 0) is given in Table I. 

3. NUMERICAL RESULTS VIA NONEQUlL IBRlUM 
MOLECULAR D Y N A M I C S  

Calculations spanning two orders of magnitude in the field strength E 
are summarized in Table I. The results can be checked in several ways. 
First, the limiting conductivity at vanishing field strength can be compared 
with the purely equilibrium calculation of Machta and Zwanzig. ~53 Within 
the 5 % uncertainties of the extrapolation and the equilibrium calculations 
the two approaches agree. 

Next, at zero field, the fraction of collisions with the disk is given by 
the ratio of the half-disk perimeter 7ur/2, where ~r is the disk diameter to the 
exposed area of the half hexagon. This value is 0.4136. Because the system 
is a mixing system, the collision rate F can be likewise be calculated 

r I r I I I 
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Fig. 2. Cycle of 20 collisions stable at a field strength of E= 3.69 p2/mm This pattern 
corresponds to the 20 spots that develop in the probability density function shown in Fig. 3. 
Collisions 1, 6, 11, and 16 in the cycle are labeled here and correspond to the rightmost dot in 
Fig. 3. 

8 2 2 / 4 8 / 3 - 4 - 2 3  
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Fig. 3. Field-strength dependence of the probability density g(e,/~)/cos/~ with increasing 
field strength�9 This density function is unity for zero field and approaches 20 &-functions 
(5 clusters of 4) at a field strength of 3.69 p2/ma. 
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Table I1. L imi t  Cycles o f  n Co l l i s ions Each Found at Field St reng th  E 
w i t h  the Corresponding Conductivit ies K 

717 

Ema/p 3.69 6.00 6.17 6.56 8.29 8.90 9.05 9.24 9.29 9.47 9 .66  9.78 10.0 
n 20 5 14 6 8 6 19 8 10 8 32 10 6 
lO0~cp/m~ 13.4  8 .27 7.32 6.03 5.64 5.02 5.06 4.20 3.30 3.79 3.93 3 .52  4.84 

analytically, with the result 3.3655v/~. Both numerical estimates were 
reproduced to three-figure accuracy in runs of one million collisions, as 
would be expected from the central limit theorem. 

The probability density g is extremely interesting; it varies from a 
cos fl distribution spanning the two-dimensional ~-fl space at zero field, to 
a set of 20 discrete, equally weighted dots at a field of 3.69p2/ma. Thus, the 
dimensionality of the probability density g must vary between two and 
zero, suggesting "fractal" nonintegral values in between. A fractal object is 
typically one in which the number of pairs of points lying within a range dr 
about a point r within the object varies as a nonintegral power of r. We 
found that this nonintegral power is 1.8 for a field of 2p2/ma and 1.6 for a 
field of 3.6p2/ma. The definitions of various nearly equivalent fractal 

Fig. 4. 
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Enlarged view, with three times as many points, of the "eye" appearing in Fig. 3 with 
E = 4p2/ma. 
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dimensionalities together with illustrations suggesting their structure can be 
found in Refs. 10 and 11. The development of the 20 spots, corresponding 
to the chain of collisions shown in Fig. 2, can be seen in the series of 
probability density functions shown in Fig. 3. 

We found 13 values of the field strength for which stable collision 
cycles occur. Those field strengths, the number n of collisions per cycle, and 
the corresponding conductivities are summarized in Table II. 

The "eye" visible just to the right of the center of the E = 4p2/ma por- 
tion of Fig. 3 (see Fig. 4) corresponds to a stable Kolmogorov-Arnold-  
Moser-like, nearly periodic orbit shown in Fig. 5. It seems likely that more 
complex nearly periodic orbits occur at other field strengths. Most of the 
phase space comprises a chaotic region, which, after a few collision times, 
condenses onto the strange attractors shown in Fig. 3. 

Figure 6 shows the dependence of the conductivity ~c on field strength. 
In that figure we scale the results in terms of the collision rate, as was done 
for the low-density case in Ref. 6. In both cases the conductivity is a 
generally decreasing function of field strength, but  with considerable struc- 
ture at low fields. The structure is the complicated consequence of the 
change in relative importance of first-, second-, and third-neighbor 
collisions as a function of field strength. 

Fig. 5. 

I I 

1 

>, 

0 

Trapped trajectory at E = 4p2/rn~ 
I I 

- 0 . 5  0,5 
x / ~  

Trapped trajectory corresponding to the "eye" seen in Figs. 3 and 4 at a field 
E = 4pZ/ma.  The motion is quasiperiodic and stable. 
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Figure 7 shows a different representation of the probability density 
g(~, fl) as a coarse-grained surface over a 180 x i80 grid in e-fl space. It is 
certainly suggested by the figures that the probability density is a 
fractal. (4'1x) If we index the grid with two subscripts i and j, the coarse- 
grained probability density g,j can be found as the solution of a steady- 
state matrix equation relating the probability of successive collisions: 

g~ = M~j~t gkt 

The matrix M =  {M0~I} is a sparse "normal" matrix, with elements 
exp(Et/p),  where t is the time required to stream from the collision 
specified by i and j to that specified by k and/ .  The largest such matrix we 
considered has 1 8 0 4 =  1,049,760,000 distinct matrix elements. The time- 
reversibility of the equations of motion has the consequence that the 
"transpose" of the matrix is equal to its inverse: 

Muk t x M~,j  = 6i~6/+ 

An iterated solution of the 32,400 x 32,400 matrix M, beginning with a 
uniform g, where g is a 180 x 180 array, is shown in Fig. 7. This calculation 

I r 

~ Scaled Boltzmann 

0.3 

.o 
0 .2  

0.1 
T w o  hard disks 

I I 

1.0 2 .0  
Ero/p 

Fig. 6. Nonlinear dependence of conductivity • (mean velocity divided by field strength) on 
field strength E. The present work, shown as a series of filled circles, is compared to the low- 
density Boltzmann-equation results (6J by introducing ro=0.29713ma/p, the mean time 
between successive collisions at zero field. The Boltzmann-equation results are scaled to match 
the present high-density results ar zero field. ( x ) Machta and Zwanzig's zero-field conduc- 
tivity. 
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= : :  :! : : i l i ;  
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- ( ! ,  / L "  

Fig. 7. Representation of the probability density g(c~,/~)/cos/~ as a surface. The figure com- 
pares the first (left) and second (right) approximations based on matrix iteration with a 
180 x 180 grid in ~-/~ space. 

required about 1 hr on a CRAY-1. This problem is one on which con- 
siderable progress could be made with the development of computers only 
a few orders of magnitude faster than present machines. 

4. C O N C L U S I O N S  

This simple periodic Lorentz gas, or Galton board, equivalent to an 
isokinetic periodic system of two disks with a driving field, although 
simple, deterministic, and dynamically time-reversible, displays many of the 
interesting features of dissipative, irreversible, many-body systems far from 
equilibrium: 

1. Mixing in the phase space due to the Liapunov instability (1~ 
of trajectories--the mixing time is of the order of the time between 
collisions. 

2. Nonlinear Conductivity, generally decreasing with increasing field. 

3. Complex phase-space geometry, with condensation onto a strange 
attractor with a fractal dimensionality. 

4. Effective irreversibility and dissipation with reversible equations of 
motion. 

The numerical work has shown that the phase-space probability den- 
sity has a fractal character, making it extremely unlikely that any efficient 
analytic description is possible. At the same time, the general dependence 
of conductivity on field strength is relatively simple, being roughly linear. 
The details of the dependence are relatively complex. 
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The reason for the complexity in the phase-space density can be traced 
to the various kinds of scattering collisions. At the conclusion of a collision, 
described by the angles c~ and fl, the moving particle can hit any of its six 
nearest neighbors or any of its six second neighbors. At finite fields even 
some of the third neighbors can be reached--see Fig. 8, where this effect is 
perceptible for a field strength E =  0.5p2/mo. The types of collisions that 
occur are shown for 12 field strengths in the figure. These collisions result 
in relatively complicated probability densities, as shown in Fig. 3. The 
structure of the boundaries becomes more complex when the curved trajec- 
tories induced by a finite field are included. The presence of a field also 
destroys the rotational symmetry of the scattering as a function of e. The 
iteration of these boundaries, corresponding to the actual sequence of 
collisions a particle undergoes, generates a highly complicated structure in 
the phase space. Because the net motion is primarily in the direction of the 
field, the volume occupied in the space decreases exponentially in time, 
thereby establishing that the dimensionality of the probability density is 
less than that of the space in which it is embedded. 

Machta and Zwanzig (5~ commented on the very irregular structure 
they discovered in the velocity autocorrelation function for this same 
model. That irregular structure no doubt has its origin in the superposition 
of relatively smooth distributions for particles constrained to collide with 
particular choices among the neighboring disks available for scattering. 

The decrease in occupied phase-space volume is, in the steady state, 
balanced by continual spreading and bifurcation due to the hard-disk 
collisions. Thus the phase-space density contraction from the thermostat 
can be directly related to the compensating Liapunov instability of the 
trajectories. 

In the unstable reversed motion the velocity (or momentum) and the 
friction coefficient ( both change sign. Thus, any solution of the equations 
of motion with a positive conductivity would correspond to a solution with 
a negative unphysical conductivity in the reversed motion. Because the 
reversed motion is subject to Liapunov instability and has a relative 
probability of zero, it cannot actually be observed. 

The motion, described in terms of the Liapunov exponents 21, 22, and 
23, may seem paradoxical. These exponents (12'13) describe the rate at which 
a three-dimensional phase-space sphere of points, infinitesimal in radius, 
deforms into an ellipsoid, with principal axes varying as exp(2it). Directly 
from the equations of motion, the volume of the sphere must shrink, on the 
average, so that 

21 "Jff •2 "~- 23 ~- - (E /p ) (  cos O) < 0 

On the other hand, the equations of motion are time-reversible, with 0 



E = 0.0 p2/ma /t" 

E = 1 . 5 p Z / m a  

o 

R 

2 

0 

2 

E = 3.0 p2/ma 

E = 4.5 p2/mo" 
f f  

/r 

Fig. 8. 

E = 0.5 p2/mo" E = 1.0p2/ma 

E = 2.0 p2/ma E = 2.5 pZ/mo" 

E = 3.5 p2/mo" E = 4.0 p2/ma 

E = 7.0 p2/ma 

~~~176 

0 tr/2 
O~ 

E = lOp2/mo" 

0 tr/2 Jr 

The regions corresponding to collisions with particular neighbors of the half-disk 
shown at the bot tom of the three sketches. At zero field strength, the boundaries of these 
regions exhibit threefold symmetry,  corresponding to the rotational symmetry of the 
triangular lattice. This symmetry is lost at finite fields. Iteration of the boundaries results in 
the fractal structure evident in Figs. 3 and 7. The shaded regions correspond to trajectories 
starting on the half disk and ending on the same particle. Collisions with the third neighbors 
at a field of 0.5 pa/ma form a small, barely perceptible, three-sided region near e = 3n/4 and 
fl = --n/8. Third-neighbor collisions are more visible at a field of  p2/ma near ~ = 37r/4 and 
fl = 0. Here c~ and fl describe the half-disk postcollision configuration and direction of motion. 
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becoming rc-  0 in the reversed motion. In the reversed motion one might 
expect that the three 2i would simply change sign, with the results 

21 = -23; 22 =0  

But this is not consistent with the existence of a positive conductivity. 
What really happens is that the principal directions of growth and decay in 
the motion are sensitive to initial conditions and differ in the direct and 
reversed motion. It is unfortunate that a direct measurement of the 
Liapunov exponents is very difficult for singular potentials, despite the 
existence of fairly efficient methods for determining these coefficients in 
simpler problems. (12,13) On the other hand, there are alternative methods 
for studying the dynamics of constrained systems and it is worthwhile to 
study their relative merits. Experience with Nos6 mechanics ~2-4'14) suggests 
that the Nos6-Hoover formulation for the friction coefficient ~ does little 
more than complicate the mathematical description, by adding two to the 
dimensionality of the corresponding phase space. 

On the other hand, Lagrangian mechanics (2,14) could be applied to this 
problem. In that case the Lagrangian has the form 

L= T(I + 2 ) - 2 K - O  

where 2 is a time-dependent Lagrange multiplier chosen such that the 
instantaneous kinetic energy T = mv2/2 has the fixed value K. The potential 
energy ~b includes both the scattering contributions with the fixed lattice 
and a linear term - E x  to drive the current. In this Lagrangian case the 
equations of motion include an effective mass m(1 +2) rather than a 
friction coefficient: 

px=mA;(l + 2), py=mg(l + 2) 

where F describes the scattering interaction with the fixed lattice of disks. 2 
varies with time to ensure that T and K are equal. But it should be noted 
that in the time-reversed equations of motion 2 is unchanged. This suggests 
that the Lagrangian description is not useful in far-from-equilibrium 
problems in which nonlinear dissipation must be considered. We have 
investigated these Lagrangian equations in order to characterize their mode 
of failure. We found that the parameter 2 and the momentum p increase 
without bound and the corresponding conductivity approaches zero 
independent of the field strength. 
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Between collisions the Lagrange equation of /}y can be integrated 
directly: 

1 + )~ = [(p2 + p 2 y ) / 2 m K ]  1/2 = sin 00/sin 0 

where we have arbitrarily chosen to set 2 equal to 0 at the initial time, 
corresponding to a velocity v(cos0o, sin 0o). From this relation the 
equation of motion for the angle results: 

0 = - E  sin 2 0/sin 0o 

The equation of motion is identical to the Gaussian version provided that 
E is sufficiently small so that AO can be ignored. For E m { x / p  2 = 1, 2, and 8, 
by using the choice 2 = 0 at each collision, we found tcp/mcr to be 0.098, 
0.106, and 0.087. 

The linking of successive collisions to the probability density g 
suggests the formulation of the Galton board problem as a mapping 
problem, with the collisions corresponding to the iteration process linking 
g - ,  go ,  and g+.  But we have not seen a way to take advantage of this 
analog. Likewise, the field-driven diffusion problem also bears a qualitative 
but barren resemblance to a one-dimensional random walk with stochastic 
collisions. 

We wish to add the following comment, responding to one referee's 
(paraphrased) question, "How seriously should we take isokinetic 
dynamics?" The need for a systematic approach to dynamical equilibrium 
was recognized by Einstein, {15) who augmented a frictional force with an 
irreversible stochastic force to account for the interaction of matter with 
equilibrium blackbody radiation. A reversible theory of thermal 
equilibration remains a difficult and desirable goal. Here we are mainly 
concerned with pointing out generic features (deterministic reversible 
equations of motion, leading to stable zero-volume attractors with 
predominantly negative Liapunov exponents) associated with non- 
equilibrium systems. {16) It is remarkable (as emphasized by the second 
referee) that even this simple one-body problem reveals profound insight 
into the generic structure of nonequilibrium distribution functions. 

APPENDIX .  COLLIS IONS W I T H  THE DISK A N D  SIDES OF 
THE H E X A G O N A L  CELL BASED ON 
A TAYLOR SERIES E X P A N S I O N  IN A0 

The exact trajectory is described in Section 2. The equations of motion 
can be written as 

x = x o - ( p 2 / m E )  In(sin 0/sin 0o) 
(A1) 

Y = Yo - ( p 2 / m E ) (  0 - 0o)  
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Expanding around 0o in a Taylor series to second order in AO = 0 -  0o, we 
have 

x = x o - (p2/rnE)[cot  Oo AO - csc20o (A02/2)] 

Y = Yo - (P2/mE) AO (A2) 

Solving to second order the intersection of the trajectory with the disk, 

x 2 + y2 = a2/4 - {x ~ _ (pZ /mE)[co t  Oo AO - csc20o (A02/2)] }2 

+ [Yo - (P2/mE) AO] 2 

Keeping terms of order AO 2 or lower, we have the quadratic equation 

[ (pZ/mE) csc20o ( (p2/mE)  + Xo) ] AO 2 

- [2(p2 /mE)(xo  cot 00 + Yo)] AO + (x~ + y~ - (cr2/4)) = 0 

The solution of the quadratic equation gives an approximate value of AO, 
which is then used in Eq. (A1) to find an exact point on the trajectory close 
to the intersection with the disk. The process is repeated to convergence by 
calculating new coefficients of the quadratic equation. We found that 
typically, for fields E <. p2/ma, three iterations were sufficient to calculate 
the coordinates at the intersection to seven significant figures. 

To find the intersection with the left and right sides of the hexagonal 
cell, we note that the equation of the left side is given by the straight line 

y = 3 m x + p  1/2 

where p is the density relative to the maximum close-packed density. In the 
calculations described here p = 4/5. 

Solving to second order in AO for the intersection with the trajectory, 
we have 

[-(3/4) 1/2 csc2Oo/(p2/mE) ] AO 2 

+ [(1 - 31/2 cot Oo)/(p2/mE)] AO + (31/2x o + p 1/2 _ Yo) = 0 

Similarly, for the right side of the hexagonal cell, the straight line is given 
by 

y =  _31/2x + p 1/2 

and the quadratic equation becomes 

[-(3/4) 1/2 csc2Oo)/(pZ/mE) ] AO z 

+ [(1 + 31/2 cotOo)/(p2/mE)] AO + (3mXo - p-1/2 + Yo) = 0 
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