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The microscopic mechanics discovered by Nose, of which Gauss's isokinetic mechanics is a spe­
cial case, makes it possible to simulate macroscopic irreversible nonequilibrium flows with purely 
reversible equations of motion. The Gauss-Nose and Nose-Hoover equations of motion explicitly 
include time-reversible momentum and energy reservoirs. Computer simulations of nonequilibri­
urn steady-state systems described by Gauss-Nose mechanics invariably evolve in such a way as to 
increase entropy. The corresponding phase-space distribution functions, which include reservoir 
degrees of freedom, collapse onto stable strange attractors. Hypothetical time-reversed motions, 
which would violate the second law of thermodynamics, cannot be observed for two reasons: 
First, such reversed motions would occupy zero volume in the phase space; second, they would be 
dynamically unstable. Thus, Noses reversible mechanics is fully consistent with irreversible ther­
modynamics, in the way forecast by Prigogine. That is, the consistency follows from the formula­
tion of new microscopic equations of motion. 

I. INTRODUCTION 

Over 100 years ago Boltzmann derived his H 
Theorem. The theorem describes a reasonable micro­
scopic basis for the macroscopic second law of thermo­
dynamics. Because Boltzmann's derivation was 
approximate-he replaced the actual reversible equa­

~ tions of motion with an irreversible approximation­
Boltzmann's work was criticized, and on two slightly 
different grounds. 

First, any system evolving in time according to time­
reversible equations of motion can be propagated back­
ward. Time reversibility implies that any trajectory 
along which entropy increases corresponds to a time­
reversed trajectory along which entropy decreases. This 
first objection to the H theorem is Loschmidt's reversi­
bility paradox. 

Second, for a finite phase space, Hamilton's micro­
scopic motion equations imply that a trajectory will 
eventually return to the neighborhood of its initial state. 
This implies again that any trajectory containing an en­
tropy increase must also contain, equally often, a corre­
sponding entropy decrease. This second objection to the 
H Theorem is the Poincare-Zermelo recurrence paradox. 

A convincing explanation of the irreversibility in­
herent in the exact equations of motion, without making 
Boltzmann's approximation, had to await fast comput­
ers. These machines make it possible to study the non­
linear systems with the three-or-more-dimensional "state 
spaces" - the generalized phase spaces including ther­
modynamic boundary variables-required for chaotic 
behavior. Prigogine has steadfastly maintained that a 
proper understanding of irreversibility requires new mi­
croscopic equations, beyond Newton's and 

~Schrodinger's. For a popular account see the February 
1987 issue of Discover magazine.! The validity of 
Prigogine's view is confirmed, in what follows, by relat­

ing the second-law irreversibility of microscopically re­
versible macroscopic systems to the properties of a new 
mechanics recently discovered by Nose. 2 

-
4 

With the advent of computers irreversibility could be 
studied numerically. The first studies examined the ap­
proach to equilibrium of isolated systems. At Los 
Alamos, Fermi, Pasta, and Ulam found striking evidence 
that microscopically reversible systems never reach equi­
librium, but instead exhibit Poincare-Zermelo recurrence 
relatively quickly.5 On the other hand, at Livermore, 
Wainwright and Alder found quantitative agreement be­
tween their hard-sphere entropy evolution and the pre­
dictions of Boltzmann's equation, on which the H­
theorem irreversibility proof is based.6 

By 1972 extensive studies involving systems driven 
away from equilibrium were underway. It became feasi­
ble to examine many-body viscous flows and heat flows 
by direct simulation,7 using reversible equations of 
motion to describe not only the Newtonian system 
which is traversed by the nonequilibrium momentum 
and energy fluxes, but also the non-Newtonian reservoir 
regions which drive these fluxes. It was not until about 
ten years later, when Evans and I explored the structure 
of the underlying differential motion equations, that 
Ashurst's work on isokinetic dynamics was recognized 
as a time-reversible application of Gauss's 160-year-old 
"Principle of Least Constraint"S 

(1) 

This principle (1) states that any constraint, including 
those imposed by Ashurst on his isokinetic reservoirs, 
should be imposed with the smallest possible constraint 
forces Fe> in the least-squares sense of the principle (1). 
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II. NOSE AND NOSE-HOOVER MECHANICS 
(REFS. 2-4) 

Just a few years ago Nose posed an interesting ques­
tion: Which microscopic dynamical equations of motion 
are consistent with Gibbs's macroscopic equilibrium en­
sembles, such as the canonical and isothermal-isobaric 
ensembles? Nose found the answer in terms of new 
time-reversible Hamiltonian equations of motion. This 
approach required a "time-scaling variable" s and a cor­
responding set of scaled momenta [p Is J . 

In an equivalent approach now called "Nose-Hoover" 
mechanics, I emphasized9 that the time-scaling is not 
only cumbersome, but also unnecessary. In Nose­
Hoover mechanics the usual Hamiltonian equation of 
motion, jJ is replaced with a generalized friction­
coefficient form: 

jJ=F f;p, (2) 

where the deterministic and reversible friction coefficient 
f; itself obeys a first-order evolution equation: 

t=[(K 1Kol l]l-? (3) 

At equilibrium, f; has a Gaussian distribution centered 
on zero.9 K is the kinetic energy, which fluctuates 
around the value K o, and 7 is a relaxation time for the 
reservoir which maintains the canonical temperature 
2K°I( 3Nk). In an equilibrium N-body system, the fluc­
tuations in f; are of order (lIN)1I2 so that the Nose­
Hoover equations of motion converge to the Newtonian 
ones in the thermodynamic limit. In the Gauss-Nose 
isokinetic limit,7 where the reservoir relaxation time 7 

approaches zero, the kinetic energy is a constant of the 
motion. In the approach to this isokinetic limit the 
Nose-Hoover coordinate and momentum deviations 
from their limiting values vanish as r'- and T, respective­
ly.1O The limiting Gauss-Nose trajectories are repro­
duced by the explicit friction coefficient 

~/(2Ko) , (4) 

where ~ is the time rate of change of the potential ener­
gy. 

Though they are not Hamiltonian the Nose-Hoover 
equations, (2) and (3), and the Gauss-Nose equations, (2) 

and (4), are time reversible, where the quality of time re­
versibility implies that a movie showing any solution of 
the equations, when run backward through a projector, 
shows a (reversed) reversible solution satisfying the same 
equations of motion. The reversibility can be under­
stood physically by following Nose's derivation,2.3 in 
which the equilibrium canonical-ensemble friction 
coefficient f; arises as the momentum conjugate to the 
time-scaling variable s. We illustrate the difference be­
tween the Nose and Nose-Hoover equations of motion 
for a simple one-body example problem in Sec. IV. The 
Nose-Hoover non-Hamiltonian equations of motion are 
much more useful than the original Hamiltonian ones 
because they suggest ways to relate not only Gibbs's sta­
tistical thermodynamics, but also the nonequilibrium 
fluid and solid mechanics of Navier and Stokes, directly 

to atomistic reversible molecular dynamics. In the none­
quilibrium generalization of Noses work, different reser­
voir regions obeying Nose mechanics can be connected 
to Newtonian regions,3,11.12 as indicated in Fig. 1. Many~; 
reservoirs can be used, not necessarily just two, or par- ' 
ticular degrees of freedom can be maintained at different 
temperatures in order to study vibrational relaxationY 

It has to be emphasized that the Gauss-Nose, Nose, 
and Nose-Hoover equations of motion differ in a funda­
mental way from irreversible equations of motion such 
as the Langevin equation. The time reversibility is 
essential to understanding the topological nature of 
non equilibrium phase-space distributions and to resolv­
ing the paradox that microscopic reversibility underlies 
macroscopic irreversibility. The study of macroscopic 
irreversibility from reversible equations of motion has 
intensified during the last four years, with an emphasis 
on finding the simplest possible systems maintaining 
both reversibility and thermodynamic significance. The 
shear viscosity of a two-body system,13 the heat conduc­
tivity of a three-body system,14 and the mobility of a 
two-body systeml5 were all studied using the Gauss-Nose 
equations of motion. 

III. FRACTAL ATTRACTORS, 
LYAPUNOV EXPONENTS, 

AND DIMENSIONALITY LOSS 

The mobility study,15 equivalent to following the 
field-driven constant-speed motion of a point mass 
through a "Galton board," that is, through a regular~ 
two-dimensional triangular lattice of hard-disk elastic 
scatterers, produced clear direct evidence for fractal ob­
jects, "strange attractors," from time-reversible equations 
of motion. Such attractors are usually associated with 
qualitatively different dissipative time-irreversible equa­
tions or with (time-irreversible) maps. The Galton-board 
phase-space attractor sections, and .subseq.uen: sin:ilar 
Poincare sections describing field-drIven diffUSIOn m a 

116sinusoidal "Frenkel-Kontorova' , . were amaz­potentIa, 
ing. Rather than revealing distribution functions amen­
able to Fourier or Tschebyschev expansion, these simple 
nonequilibrium problems instead generated fractal ob­
jects, such as those shown in Fig. 2. Fractal objects such 
as these characteristically show a discontinuous struc­
ture at arbitrarily small scales of observation. 17 The 
reasonable idea of expanding nonequilibrium distribution 
functions as sums of orthogonal functions cannot work 

~~SSi-NoS(!! 
Reservoir 1 

Gauss-Nose 
Reservoir 2 

~ 

FIG. 1. A steady-state time-reversible nonequilibrium sys­
tem in which two reservoirs, with Gauss-Nose or Nose-Hoover 
mechanics applied to at least some degrees of freedom, are 
linked to a bulk Newtonian nonequiJibrium region. 

http:observation.17
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FIG. 2. Section of a typical fractal object representing a small-system nonequilibrium simulation. The problem (a mass point 
falling at constant kinetic energy in a two-dimensional "Galton board"') is discussed in Ref. 15. The field driving the motion of the 
scattering point is E and the scatterers are arranged in a triangular lattice. The angle a measures the point of collision relative to 
the field direction. The angle /3 the direction of the scattering point's velocity after a (hard-disk) collision, relative to the radi­
al vector linking the interacting particles. 

for such problems, even in the linear region described by 
...- the Green-Kubo theory. 

To begin a quantitative characterization of these re­
versible dissipative systems it is useful to follow 
Benettin's lead l8 by determining the spectrum of 
Lyapunov exponents !)ei J. This can be done for both 
equilibrium systems and ;-far-from-equilibrium Nose­
Hoover systems. The Lyapunov exponents describe the 
exponential growth and decay rates of objects in phase 
space. The one-dimensional distance between two neigh­
boring points which move following the equations of 
motion increases as the exponential of (I'lt), the two­
dimensional area defined by three moving trajectory 
points increases as the exponential of ()'j t + )'2t), the 
four-point three-dimensional volume increases as the ex­
ponential of (Alt + A2t + A3t), and so on. The reversibili­
ty of the equations determining these exponents shows 
that, for steady fiows, the reversed trajectories have re­
versed Lyapunov spectra, with each Ai in the forward 
direction becoming )'; in the backward reversed direc­
tion. This important symmetry property would be suc­
cessfully disguised were we to use stochastic motion 
equations, such as the Langevin equation, rather than 
Nose's. The spectra, for dense fluids such as a Lennard­
Jones fluid, turned out to have approximately a Debye 
form,19,20 as shown in Fig. 3, with a maximum 
Lyapunov exponent equal to a typical atomic vibration 

....-.. frequency. 
The time reversibility of the Lyapunov spectrum im­

plies just two possibilities: a phase-space hypervolume 
centered on a comoving trajectory can either move with 
a constant hypervolume, with equal numbers of positive 

and negative Lyapunov exponents, or can alternatively 
grow in one time direction and shrink in the other direc­
tion of time. This latter possibility is an "Arrow of 
Time,,,l and has in fact been observed in every single 
nonequilibrium Gauss-Nose or Nose-Hoover simulation 
studied so far, including Morriss's recent study of two­
body shear flow. 21 It is physically apparent, for a steady 
dynamical state, that the full phase-space hypervolume 
cannot be an increasing function of time. In every case, 
in the forward direction of time the phase-space hyper­
volumes shrink to a stable fractal object. This fractal at­

-2 

-3 

FIG. 3. A typical dense-fluid Lyapunov spectrum, showing 
the resemblance to the cube-root Debye spectrum drawn as a 
smooth curve. Nine of the 18 Lyapunov exponents are shown. 
The system is a four-body three-dimensional dense fluid with a 
short-ranged repulsive potential cut off at the value r= 1 and 
with an anharmonicity resembling that of the Lennard-Jones 
potential. 
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tractor is stable in the sense that its volume is continu­
ously shrinking, and reaches a steady-state limit of zero. 
The reversed "repellor" state-just like the attractor but 
with the signs of all the momenta and friction 
coefficients reversed-is unstable. The corresponding 
repellor Lyapunov spectrum has a positive sum, corre­
sponding to phase-space growth and instability. Sections 
of a simple attractor-repellor pair are shown in Fig. 2. 

Thus the situation is this. Nonequilibrium systems 
very quickly (in a physical time of order picoseconds) 
collapse onto a. stable fractal subspace of the complete 
equilibrium phase space. The logarithmic rate at which 
the volume decreases is exactly the rate at which entro­
py, divided by Boltzmann's constant, is generated. 
Within the zero-volume fractal subspace the incredible 
churning motion described by the attractor is chaotic 
and formally reversible. But, the time-reversed trajecto­
ry is actually unstable, with predominantly positive 
Lyapunov exponents. The zero phase-space volume of 
the corresponding repellor (reversed attractor) coupled 
with its evolutionary instability, guarantees that 0) the 
repellor cannot be located, and that (2) any approximate 
effort to locate and follow a reversed trajectory will soon 
fail. The only effective way to find a repellor (which 
would violate the second law of thermodynamics) is to 
run a known attractor trajectory backward in time. 

An interesting feature common to all the Gauss-Nose 
and Nose-Hoover calculations is the effective loss of de­
grees of freedom inherent in the lowered fractal dimen­
sionality of the phase-space attractors. Figure 1 shows a 
typical situation, in which a bulk Newtonian system is 
driven away from equilibrium by two adjacent reservoir 
regions. In a real system, this loss must occur in the 
nonequilibrium Newtonian region, shown in the center 
of the figure, rather than in the driving reservoir regions 
shown adjacent to the bulk region. It is clear, from the 
relatively small dependence of transport coefficients on 
system size, that the thermos tatted boundaries have little 
effect on the phase-space dimensionality loss aD. 22 

Thus the fractal phase-space structure characterizes not 
the boundaries, but rather the bulk Newtonian part of 
the system. A many-body example is discussed in Sec. 
V. The bulk system's dimensionality loss is extensive, 
and depends only on the magnitUde of the departure 
from equilibrium. 

To estimate the dimensionality loss aD we simply ask 
for the maximum dimensionality, D ma" of a phase-space 
object which still increases its hypervolume with time. 
For the subspace volume to increase, the sum of the 

largest Lyapunov exponents, Al + ... AD ' 
max 

must be positive, but so close to zero that adding one 
more term makes the sum negative. If the system is not 
too far from equilibrium then the remaining (negative) 
Lyapunov exponents are all close to the minimum value, 

AI =AN -v, where v is a frequency of order the 
Debye frequency. Thus the dimensionality loss is ap­
proximately 

/(kv) , (5) 

where S is the rate of irreversible entropy production 

and k is Boltzmann's constant. For water, sheared at a 
strain rate of 105 Hz, the loss of degrees of freedom is 
about one billion per cubic centimeter, independent of 
the number of degrees of freedom used in the thermo~', 
stats which drive the motion. 

IV. ONE-BODY ONE-RESERVOIR 
Ol'OE-DIMEl'OSIONAL EXAMPLE (REF. 20) 

To make the connection between irreversibility, frac­
tals, and Lyapunov spectra clearer, it is useful to consid­
er examples. The simplest example is that of a one­
dimensional particle, accelerated by a field but main­
tained at constant temperature by Nose or Nose-Hoover 
equations of motion. The example is interesting too in 
pointing out the qualitative differences between these 
two closely related approaches. To avoid complexity we 
set the temperature T, Boltzmann's constant k, the re­
laxation time 1', particle mass m, and field strength g all 
equal to unity. Nose's Hamiltonian for this situation is 

HNose = [p; /(2S2)] +(p} /2)-x +Ins (6) 

The equations of motion 

x=[Px/(S2)], Px=l, s=Ps' 

Ps [(Px/s )2 I]ls 

have the solution 

x=lnt, Px=t, s t, Ps=l, 

so that this Hamiltonian system has no steady-state be­
havior at long times. On the other hand, Nose's scaled 
equations of motion, with each of the rates in (7) multi­
plied by the scaling factor s, are 

x=(px/s ), Px=s, s=~ps' Ps=[(Px/s 1], (9) 

with the solution 

, Ps I. (10) 

where the "new" time, t in (10), is the logarithm of the 
"old" time, t in (£). Finally, the Nose-Hoover equations 
for this same problem, equivalent to (9), but with P re­
placing Px /s and {; replacing p" are 

x=p, jJ=l I , (11) 

which have the (stable) solution 

x=t, p=l, {; (12) 

[where t in (12) and t in (10) coincide] corresponding to 
steady motion with the potential energy gained from the 
field being extracted by the friction coefficient {;. 

This example is a particularly interesting one bec;:l'lSe 
it illustrates the way in which the same trajectory (in 
xpxsps space) can correspond, when traversed at 
different nonuniform rates, to very different physicalbe-,~ 
haviors. In the "scaled-time" picture (10) or the Nose- . 
Hoover picture (12) a well-defined steady state with a 
nonzero current results. In the original Nose Hamiltoni­
an picture (8) a transient state results instead. The rela­



256 WILLIAM G. HOOVER 

tionship between the two solutions is interesting. Be­
cause the relationship between the "new" scaled time in 
(10) and (12) and the "old" Hamiltonian time in (8) is 
logarithmic, the interval of "old" time required to see a 
fixed interval of "new" steady-state time increases ex­
ponentially fast. Thus the nonequilibrium scaled-time 
solution or the equivalent Nose-Hoover solution give a 
steady state which is simply not observable in Nose's 
original Hamiltonian picture. 

V. EIGHT-BODY TWO-RESERVOIR 
THREE-DIMENSIONAL EXAMPLE 

Consider a dense three-dimensional periodic fluid of 
particles interacting with the purely repulsive potential 

(13)rP= lOOt 1 

For convenience we choose the particle mass, diameter, 
specific volume V IN, and Boltzmann's constant all equal 
to 1. If we choose one particle to be "hot," with tem­
perature Th , and another to be "cold," with temperature 
Tc ' we expect to see a flow of heat from the hot particle 
to the cold particle, with the remaining six particles tak­
ing up an intermediate temperature. To fix the center of 
mass of the system we use the equations of motion 

(14) 

for the reservoir particles, where <;p > is the instantane­
ous average, (;hPh +t;cPc l/8. The phase space des crib­

~ ing this system, with the center of mass fixed, is 
6(N - 1)+2=44 dimensional. For the six Newtonian 
particles the equation of motion is 

(] 5) 

Numerical work, using Nose-Hoover thermostats, shows 
that such a system is stable and well behaved. 

As an illustration we choose the special case with the 
two temperatures equal to 1.0 and 0.1, with the friction 
coefficients determined by the equations ~i=p2-3Ti' 
Average potential and kinetic energies of 2.5 and 8 re­
sult. The steady-state values of the hot and cold friction 
coefficients are, respectively -1.6 and + 16. This corre­
sponds to an energy transfer rate of 3 X 1.6=0.3 X 16 and 
an entropy loss rate -3 (1.6 16)X(f)=38, where 
the factor of t results from the center-of-mass term in 
the equations of motion. The thermodynamic state is 
close to one for which the entire equilibrium Lyapunov 
spectrum is known.2o 

N ow what are the implications of these observations 
in terms of the fmc tal phase-space at tractors discussed 
in Sec. III? The steady energy balance between the 
power furnished to the hot particle and that absorbed by 
the cold particle corresponds to an entropy loss rate of 
38. Because the Lyapunov spectra are insensitive to 
departures from equilibrium we expect that the 14 most 

~negative of the 44 exponents vary roughly linearly be­
. tween 3.5 and -2.5, so that a larger entropy loss rate, 

at least 14 X 3 =42, would be required to reduce the oc­
cupied nonequilibrium phase-space attractor dimen­
sionality by 14. Thus hot and cold temperatures of 1.0 

and 0.1 are not sufficiently different to reduce the phase­
space dimensionality below the bulk value. The number 
of degrees of freedom which must be added, in reser­
voirs, to maintain a nonequilibrium steady state, usually 
exceeds the dimensionality loss of the combined 
reservoir + bulk + reservoir phase space. 

But it has to be emphasized that the reservoirs gen­
erally play no role in the loss of dimensionality. A 
"hot" reservoir typically gains entropy (phase-space 
volume) from the action of the frictional forces required 
to maintain its temperature. It simultaneously loses an 
exactly equivalent entropy through heat flow to its 
neighboring Newtonian system. Likewise, the frictional 
and Newtonian heat transfers cancel for a "cold" reser­
voir. Only in the Newtonian region, which alone is far 
from equilibrium, is the phase space contracted. It is 
clear that reservoir regions so different in condition as to 
drive a system into a periodically repeating "limit cycle" 
can actually reduce the total number of degrees of free­
dom required to describe the phase space to unity, corre­
sponding to the time measured along the periodic solu­
tion. 

VI. THREE-BODY TWO-RESERVOIR 

TWO-DIMENSIONAL EXAMPLE 


In order to study the simplest example incorporating 
realistic Newtonian dissipation in conjunction with hot 
and cold reservoirs, consider a two-dimensional three­
body system modeled after Fig. 1. The height is 2 and 
the width 1 + 1 + 1 = 3. The short-range repulsive in­
teraction potential is given by (13). Thus a single 
Newtonian particle transmits heat between hot and cold 
Nose-Hoover reservoir particles. Lyapunov spectra were 
determined for a variety of temperature differences, not 
just in the complete 14-dimensional phase space, but also 
in the two five-dimensional reservoir phase spaces and 
the four-dimensional Newtonian phase space. The spec­
tra were determined by following the motion of basis 
vectors (14 in the full space, 5 or 4 in the subspaces) con­
strained to remain orthonormal as explained in Ref. 19. 

The time-averaged histories of these basis vectors pro­
vide a detailed account of the dynamical instability and 
dissipation present in a system far from equilibrium. 
But it is not a simple matter to apportion the dissipation 
and irreversibility among the three interacting particles 
or among their corresponding subspaces. The Lyapunov 
spectrum for a Newtonian subspace necessarily sums to 
zero. The Lyapunov spectra for the cold and hot sub­
spaces have sums which are respectively negative and 
positive. And a positive Lyapunov sum has no meaning­
ful geometrical interpretation in a steady state. 

The projections of the orthonormal basis vectors are 
also hard to interpret, although this situation may im­
prove as more experience with a variety of problems be­
comes available. The basis vectors with the largest rms 
projections in the friction-coefficient directions typically 
correspond to small Lyapunov exponents near zero. The 
basis vector associated with the most negative Lyapunov 
exponent had substantial projections onto the subspaces 
of all three particles, but with the greatest components 
corresponding to the highest-temperature particle. Like­

http:known.2o
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wise the basis vector associated with the most positive 
Lyapunov exponent had its greatest projections in the 
hot-particle subspace. A more-detailed localization and 
identification of the microscopic site of second-law ir­
reversibility is the tantalizing goal of ongoing studies of 
basis-vector dynamics. 23 

VII. SUMMARY AND CONCLUSION 

To summarize the situation, about 40 years after 
Fermi's pioneering work at Los Alamos, fast computers 
have been used to show that the macroscopic second law 
of thermodynamics is a natural consequence of reversible 
microscopic equations of motion. Further, the paradoxi­
cal reversed states, which could theoretically violate the 
second law, are not only invisible (because they occupy a 
zero-phase-space-volume repellor) but also unstable. 
The recurrence paradox does not apply to steady states 
such as those generated using Noses mechanics. Such 
states obey the second law of thermodynamics on both 
short and long time scales. It is both natural and physi­
cally reasonable that dissipative steady states do nearly 
recur repeatedly, as time goes on. 

The simplicity and utility of Nose's idea of using feed­
back to link thermodynamics to mechanics suggest 
promising applications in fluid and solid mechanics and 
in plasma physics, particularly in problems where 
boundary interactions currently frustrate numerical 
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