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The thermod.ynamic irre~ersibiIity Of. molec~lar processes involving heat transfer is established by incorporating time-reversible dynamical 
thermostats In th: equatl<;ns of .motI.on. It IS th~~ possible to understand why nonequilibrium steady states must obey the Second Law 
of The::no~ynamlcs, not Just With hIgh probabilIty, but with probability one. This is because nonequilibrium states are so rare, relative 
!O equIhbnum ones, as to o~cupy a.~r~-volume multifractal part of equilibrium phase space. These conclusions are generally valid. We 
Illustrate them here by studYing equlhbnum manyb?dy systems, both solid and fluid, as ~ell as a simple one-body chaotic nonequilibrium 
~teady state. In all t~,ese cases ~~ folio,:". the motIOn of an orthonormal set of comovmg vectors {b}, determining the time-averaged 
Lyapunov Spectrum of dynamIc mstabJlity rates, as well as the vectors "Rotation Spectrum", and relating these spectra to the irreversible 

nature of nonequilibrium flows described above. 

1. Introduction 

The dynamical properties of fluids and solids have been 
extensively studied both experimentally and by computer 
simulation [1]. For systems in thermodynamic equilibrium 
the main emphasis has been on the determination of time 
correlation functions of dynamical variables, for nonequili­
brium systems on the evaluation of the in general non-linear 
response of the system due to an applied perturbation X(t). 
Only in the limit of vanishing X it is possible to relate the 
transport coefficients to time integrals of equilibrium cor­
relation functions of their respective currents. These are the 
famous Green-Kubo integrals [2-4J formiog the basis of 
many simulation studies of transport phenomena. For finite 
X, however, the phase-space distribution function f(C t) is 
not a well behaved and smooth function of the phase vari­
ables r. For this particular reason the non-linear response 
theory is not in an advanced stage, the consequences of the 
singular nature of f(C t) having been discussed [5J only 
recently. 

In this paper we review the evidence we have from non­
eqUilibrium molecular dynamics simulations, which may 
help to understand irreversible behaviour of systems in non­
equilibrium steady states. The key to' this problem is the 
evaluation of the sensitivity of a trajectory in phase space 
to small, actually infinitesimal, perturbations of its initial 
conditions. This property may be expressed in terms of Lya­
punov characteristic exponents, the whole set being referred 
to as the "Lyapunov spectrum" of the system. The Lyapunov 
exponents describe the exponential spreading apart of neigh­
bouring phase-space trajectories and will be discussed in 
more detail in Section 3. In the course of time the separation 
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vectors o(t) between such neighbouring trajectories not only 
change their norms but also their orientations in phase 
space. This serves to define characteristic rotation numbers 
[6J, the whole set being referred to as the "rotation spec­
trum". In Section 4 we present new results for the Lyapunov­
and rotation spectra of an equilibrium 32-particle system in 
three dimensions. Both liquid and solid states are consid­
ered. These are probably the first calculations of rotation 
spectra for many-particle systems. •The sensitivity of the equations of motion to small vari­
ations of the initial conditions is responsible for the irre­
versible approach to equilibrium in accordance with the 
Second Law of thermodynamics. From simulations of the 
Lyapunov spectra of nonequilibrium systems in steady 
states one finds that the nonequilibrium distribution func­
tionf(C t) collapses onto a fractal attracting subset of zero 
phase-space volume. This is demonstrated in Section 5 for 
a simple one-dimensional conductivity model. It is shown 
for this particular example that the underlying strange at­
tractor is a "multifractal" set with a whole spectrum of di­
mensions D q • The information dimension Dl is significantly 
smaller than the Hausdorff (capacity) dimension, which in 
turn is smaller than the dimension D = 3 of the phase space. 
This indicates that this system is not ergodic. In another 
example of comparable complexity studied by Hoover and 
Moran [7J - nonequilibrium diffusive flow, periodic in 
space but stationary in time [8,9J - the Hausdorff dimen­
sion agrees with D; this system seems to be ergodic and 
mixing, even far from equilibrium. 

The appearance of fractal attractors of zero phase-space 
volume provides the basis for a geometrical interpretation 
of the irreversible behaviour found in such nonequilibrium 
steady-state systems. The arrow in time exists in spite of the 
time-reversal invariance of the underlying phase-space dy­
namics. This connention with the Second Law will be dis­ • 
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cussed in Section 6, The essential step to bridge this gap is 
the use of recently developed time-reversible equations of 
motion interacting with macroscopic hcat reservoirs. The 
essence of this method will be shortly described in the fol­
lowing Section. 

2. Nonequilibrium Molecular Dynamics and Heat Baths 

In a nonequilibrium system any external perturbation 
X(t) will perform work on the system. As this work is dis­
sipated into heat a continuous increase of temperature re­
sults. To achieve nonequilibrium steady state conditions a 
deterministic feedback mechanism has to be introduced, 
which according to Nose [10,11] and Hoover [12] shows 
up in the equations of motion as an additional constraining 
force term. As an example we consider in the following mass 
conductivity of N particles in an external field X(t) - such 
as an electric field acting on charged particles carrying unit 
charges c ±1. The equations of motion are [14J: 

i
iI = p/m 

t p = F(q) + cX(t) (1) 

( (K!~-

Here, r (q,P. 0 denotes a point in phase space, where q 
stands for all coordinates, and p for the momenta. ft 

c 

p L p/Ne is the peculiar momentum of a particle relative 
to the center of mass of the Nc particles carrying a charge 

c (over which the sum L has to be performed. ( is a single 
additional variable representing the action of the thermo­
stat. K = L ft2/2 m is the instantaneous peculiar kinetic en­
ergy, and Ko gkT/2 its long-time averaged value. The• 

c 

sum is over all particles, and g denotes the momentum de­
grees of freedom. kB is Boltzmann's constant. F -a<p/aq 
is the intrinsic force with <P(q) the potential energy. In (1) 
the equation for each particle is modified by the feedback 
term - (ft and the thermostat is homogeneous. If only 
boundary particles are affected, the method is inhomoge­
neous. In any case, some form of thermostatting is essential 
for achieving nonequilibrium steady states. 

The parameter r in (1) is the response time of the ther­
mostat and is usually chosen to be of the order of a collision 
time. In the limit r-> oc Newton's equations of motion are 
recovered. In the opposite limit of infinitely fast response 
the equations are equivalent to evolution equations derived 
from Gauss' principle of least constraint which keeps the 
kinetic energy exactly constant' (isokinetic simulation) 
[15,16]. 

Under equilibrium conditions (X(t) 0) the Nose-Hoover 
Eqs. (1) generate a canonical ensemble, provided that the 
system is ergodic and mixing. The equilibrium phase-space 
distributions assumes the canonical form 

(2) 

where Ho = K + <P is the internal energy, IJ = l/kB T, and 
the partition function Z Jdr exp [ - f3 HI) (1/2) C]. 

The dimension of phase space for Nose-Hoover mechanics 
is 2dN + 1, d being the dimension of space and N the num­
ber of particles. The extra dimension is contributed by the 
thermostat variable (. 

To achieve a nonequilibrium steady state the extcrnal field 
X(t) is switched on at t = 0 and is held constant afterwards, 
X(t> 0) X After the decay of initial transients the 
state average of the dissipative flux J L. cp/m serves to 
define a conductivity CJ which in general still depends on the 
magnitude of the external field: 

<J) CJ(X) X • (3) 

The rate of work performed on the system by the field is 
given by TV = <J). X For steady states this is equal to the 
rate at which the generated heat is removed from the system 
by the thermostat. This energy balance establishes that 

<J) . X 1<0 = =-<A), (4)
2Ko g 

where, as before, g denotes the thermostatted momentum 
degrees of freedom. The last equality relates the thermostat 
variable to the rate of logarithmic phase-space expansion, 
A == (ajar· t(f, t). This important relation will be used 
below_ 

We want to stress that the Nose-Hoover equations of 
motion or the related equations based on Gauss' isokinetic 
mechanics are time reversible. This means that replacing t 

by t and all momentum-like variables p, ( by - p, - ( 
leaves the equations of motion unchanged. Nevertheless, un­
der nonequilibrium steady-state conditions they always 
positive friction coefficients <() in accordance with the Sec­
ond Law. We shaH come back to this point in the following 
sections. 

The particular example (1) is for mass flow in an external 
field. Equivalent formulations of Nose-Hoover or Gauss 
equations of motion for other transport phenomena such as 
shear viscosity or heat conductivity have been discussed by 
Evans, Hoover and others [15-19J. 

3. Lyapunov and Rotation Spectra 

The fundamental property of a chaotic system is the sen­
sitivity of its phase-space trajectory to a small perturbation 
of the initial conditions. If the flow (1) are abbreviated 
as 

t(t) G(f(t)), (5) 

an infinitesimal perturbation (arl! 01 develops in time 
according to the linearized equations 

(6) 

where the dynamical D x D matrix D(f) = aGjar couples 
the reference trajectory r (t) to the time evolution in tangent 
space of the differential offset vectors oJt). In a D-dimen­
sional phase space there are D linearly independent vectors 
iii, I 1, ... ,D. Their formal solution may be written as 
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b/(t) = L(t;O) 01(0), (7) 

where the propagator L is a time-ordered exponential [21]: 

(8)L{t; 0) 

Oseledec showed [20] that for sufficiently well-behaved flow 
equations such as (1) there exists for almost every r(0) a set 
of orthonormal vectors 01(0) with lengths diverging or con­
verging exponentially with time. The corresponding rate 
constants 

Al = lim 1 In IL (t; 0) 0, (0) I (9) 
t co t 

are independent of r(0) and are called the Lyapunov char­
acteristic exponents. The whole set {Ad is referred to as the 
Lyapunov spectrum of the system. For convenience the A, 
are ordered from largest to smallest, I.! ~ A2 ... ~ I'D' 

From a practical point of view the precise orientation of 
all initial vectors {MO)} is not known nor is it needed for 
the determination of the Lyapunov spectrum. Any arbitrar­
ily oriented set of orthonormal vectors will do. However, 
these vectors will not stay orthonormal for t> 0 but will 
start rotating into the direction of largest phase-space 
growth and eventually diverge. In the classical algorithms 
developed by Benettin and others [22 - 24] this is prevented 
by reorthonormalizing the vectors pcriodically after a cer­
tain number of time steps. In a more refined and continuous 
algorithm the vectors o,(t) are constrained to remain or­
thonormal for t > 0, and the Lyapunov exponents are cal­
culated from the time-averaged Lagrange multipliers con­
tained in the constraining forces [14, 21, 26]. A/ gives 
the time-averaged rate at which pairs of neighboring phase 
trajectories diverge or converge exponentially, Al + )'2 the 
rate of divergence or convergence of a small comoving 
phase-space area, and finally )1 + ... + )., the rate of diver­
gence or convergence of a small i-dimensional phase-space 
object. For a chaotic system at least one of the exponents, 
;';' has to be positive. 

If the time average in (9) is explicitly written as 

· 1 st , ( ') d ; 11m - AI t t, (10) 
,~co t 0 

the time dependent integrand AI (I) is g~en by 

(11) 

It may fluctuate considerably around its mean. In the case 
of a chaotic flexible pendulum the root-mean-square fluc­
tuation of },/(t) may exceed },' by a factor of 10 [27]. The 
lluctuations around the mean depend on the choice of co­
ordinates and can be made arbitrarily large. 

In addition to the stretching or contraction of the vectors 
(5/(1) for t > 0 they are also constantly reoriented with an 
instantaneous angular frequency OJ/(t). The propagator (8) 

may be written as L RS, where S performs the expansion 
or contraction operation, and R is a unitary rotation [21]. 
The time averages 

1 t 

OJ/ = lim - SOJI(r') de' 
t CD t 0 (12) .' 

define "rotation numbers" OJ/. Their whole set will be re­
ferred to as the "rotation spectrum" [6]. 
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Lyapunov spectra for various equilibrium states on the isotherm 
kg Tie 1.15. The densities are indicated by the labels. Although 
the exponents are defined only for integer values of the index n, 
they are connected by a smooth line to enhance clarity. Only the 
positive branches of the spectra are shown such that Ama, is asso­
ciated with 11 = 96 and the smallest positive exponent with n = 5. 

All quantities are given in reduced units •4. Simulation of Equilibrium Systems 

In this section we report Lyapunov spectra for equilib­
rium systems consisting of N = 32 particles in three di­
mensions over the whole range of liquid and solid densities. 
Though no thermostat is needed for such a simulation, we 
use an isokinetic Gaussian thermostat in the equations of 
motion which defines the desired temperature for a given 
density. A Nose-Hoover thermostat as in (1) -- with van­
ishing external perturbation X(t) and generating a canonical 
ensemble - would serve the same purpose, the Lyapunov 
spectra being insensitive to the ensemble used for the sim­
ulation [14,28]. Equilibrium systems evolving according to 
time-reversible equations of motion have symmetric Lya­
punov spectra: for each positive exponent there is a negative 
one with equal absolute magnitude. Therefore only the pos­
itive branches of the spectra are shown in Fig. 1. There are 
seven constants of the motion center of mass, momentum 
and kinetic energy. Since the exponents always appear in 
pairs of opposite sign, eight exponents out of a total of 192 
must vanish. This is confirmed by the simulation. The van­
ishing exponents are not included in Fig. 1. 

For the calculation of the Lyapunov spectra the usual 
periodic boundary conditions must be implemented with 
care. To strictly conserve the center of mass the periodic 
boundaries must be used only for the calculation of the 
forces. In our simulation the particles interact with a Len­ • 
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nard-Jones potential which is smoothly truncated at r/cr
V3 by fitting a cubic spline at the inflection point (26/7)1/6 cr 
[29,30]. Lennard-Jones reduced units are used throughout, 
for which the well depth e, the range cr, and the particle mass 
m are unity. The unit of time is therefore 7: = cr(m/e)l!2. For 
the simulation of L exponents 2dN(L + 1) differential equa­
tions of first order have to be integrated simultaneously. In 
our case (L D/2) this requires the simultaneous solution 
of more than 18000 equations for at least 300 time units. A 
fourth-order Runge-Kutta integrator with a time step 0.001 
was used. 

All spectra in Fig. 1 correspond to the constant tempera­
ture kBT/e 1.15. The densities (! vary"from 0.5 to 1.2. The 
shape of the spectrum changes qualitatively from the liquid 
to the solid [28J and can be roughly described by power 
laws reminiscent of Debye's crystal-frequency distributions: 
len) a [/1 (c/2)]P, /1 is an index associated with an ex­
ponent such that n = D/2 96 for the largest, and 11 = 5 
for the smallest positive exponent. c = 8 is the number of 
vanishing exponents. For the liquid states fJ is of the order 
of 1/3 [14J and becomes larger than one for the solid [28]. 
Analogous results have also been obtained for systems in 
two [28J and one [31J dimensions. 

In 2 the largest Lyapunov exponent is plotted for 
states on the 1.15-isotherm as a function of density. For (! 

near the liquid-solid phase transition it reaches a maximum 
which indicates very fast dynamical events and efficient mix­
ing in the system. 
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Fig. 2 
Variation of the largest Lyapunov exponent }'m.x as a function of 
the density i2 for equilibrium states on the isotherm kB Tje 1.15 

The rotation spectra for some ofthe states on the same 
isotherm are plotted in Fig. 3 as a function of the index n 
introduced above. For the same reasons as for the Lyapunov 
spectra the rotation spectra are also symmetric: there are 
always two identical positive rotation numbers associated 
with the two Lyapunov exponents equal in absolute mag­
nitude. Therefore only one branch of the various rotation 
spectra is shown. For larger indices 11 > 10 the spectra are 
smooth and well behaved. For small 11, 'however, for which 
the Lyapunov exponents are very small or identical to zero, 
the rotation spectra show a very pronounced fine structure. 
The origin of this feature is not clear. The spectra vary 

smoothly with density and show no anomaly near the liquid 
solid phase transition. It is in leresting to note that the offset 
vectors (j/(t) pointing into phase-space directions expanding 
or contracting violently rotate rather slowly, whereas phase­
space directions associated with vanishing Lyapunov ex­
ponents cause these vectors to reorient with fast angular 
velocity. 
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Fig. 3 
Rotation spectra for various equilibrium states on the isotherm 
ks Tis = 1.15. The density decreases from the top to the bottom 
curve as indicated in the figure. No anomaly due to the solid-liquid 
phase transition is observed. The rotation indices are defined only 
for integer n. The 96 rotation numbers shown for each spectrum 
are smoothly connected to enhance the clarity of the figure and 
correspond to the positive branch of the respective Lyapunov spec­
trum. The remaining 96 numbers for each spectrum not shown in 
the figure are symmetrical around n = O. Lennard-Jones reduced 

units are used as defined in Section 4 

5. Systems in Nonequilibrium Steady States 

If the external field in (1) is switched on at t °and held 
constant, X(t) = XB(t), the system approaches a steady 
state after the decay of some transient behaviour [5J. To 
see what the consequences for the phase trajectory are it is 
advantageous to study a simple low-dimensional example 
such as the one-dimensional conductivity of a single particle 
in a periodic potential and subjected to an external field 
[32]. The equations of motion (1) simplify considerably and 
may be written in appropriate reduced units as 

x p 

jJ = -sinx + X'=- (13) 

The phase space is periodic in x-direction with periodicity 
2 ir. The simulation reveals chaotic trajectories [32J for cer­
tain values of the parameters X and L In 4 the Poincare 
map for x = 21t i, i integer, is shown for 1/T" = 0.1 and 
F 0.3. Clearly, the phase space visited by the trajectory is 
a strange attractor, Its Lyapunov dimension may be de­
duced from the Lyapunov exponents), {0.0393, 0, 

0.0842} with the help of the Kaplan-Yorke formula 
[33,34]. One finds DL = 2.47, which is significantly smaller 
than three, the phase-space dimension for this case. 
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This finding can be strengthened by evaluating the whole 
multifractal spectrum of singularities f(a), where a is the 
strength of the singularity [35, 36J. The singularity spectrum 
is related to the generalized Renyi dimensions Dq defined as 

1 . In ~ pnL) 
Dq = --1 hm InL (14)

q - L~O 

If the whole attractor is covered with boxes of size L, Pi (L) 
in (14) denotes the probability of the trajectory to be in box 
i (measure integrated over i). q is a "microscope parameter" 
which emphasizes regions in phase space according to their 
singularity strength: q > 1 gives more weight to regions 
characterized by large a, and q < 1 accentuates regions with 
weak singularities. If f(a) is known "the Renyi dimensions 
can be 0 btained from 

1 
Dq = ~-1 [qa(q) - f(a(q))J . (15)

q-

Do is the Haudorff dimension, which is the dimension of the 
support of the measure, Dl is the information dimension, 
and D2 is the correlation dimension introduced by Grass­
berger and Procaccia [36,37]. 

The method of Chhabra and Jensen [38J was used for the 
evaluation of a(q) and f(a(q)) according to 

I J1i(q,L) In [Pi (L)J 
a(q) = lim (16)

L _0:;_ InL 

f(q) = lim (17)
InLL~oo 

where 

J1;{q, L) = p? (I)/I pl (L) (18) 
J 

is also a normalized invariant measure. If the respective 
numerators of (16) and (17) are plotted against In L for var­
ious L, a andfmay be determined from the limiting slopes. 
Since this method is a box counting algorithm which re­
quires a significant amount of storage on a computer, it was 
not applied to the total attractor but to the Poincare section 
of Fig. 4. The dimension of the total attractor is obtained 
by adding unity to the section dimensions. The whole Poin­
care map was covered with 1024 x 1024 boxes and three 
million points of the map were used to define Pi (L). The 
result is depicted in Fig. 5 with the parameter q indicated 
by the labels. 

The information dimension Dl = f(a(1)) = 2.47 agrees 
very well with the Lyapunov dimension found above and is 
a very useful parameter for characterizing the attractor. The 
method, however, did not converge well for q = O. Therefore 
the Hausdorff dimension was obtained only by extrapola­
tion (smooth line) from the maximum of[(a). In spite of this 
ambiguity Do is significantly lower than three, thc phase 
space dimension. This indicates that for this particular one­
dimensional conductivity model even the support of the 
measure for the attractor has a vanishing volume in phase 
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Fig. 4 
Poincare map of sections defined by x = 2rrj,j integer, for the one­
dimensional conductivity model discussed in Section 5. 10000 
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Multifractal spectrum of singularities f(rx) as a function of the sin­

gularity strength rx for the Poincare section of Fig. 4. The value of 

the parameter q is indicated by the label. The smooth curve is an 

extrapolation to q = O. To obtain the Renyi dimensions Dq for the 

one-dimensional conductivity model discussed in Section 5, unity 


has to be added to f(rx(q)) 


space. In a similar study of a two-body Lorentz gas the 
Hausdorff dimension was found to agree with the phase­
space dimension, but the information dimension was signif­
icantly smaller [7]. We believe that this is the generic case 
for many-body systems in two or three dimensions. 

The main conclusion of this section is that for nonequi­
librium systems in steady states the information dimension 
DI is smaller than the phase-space dimension D. This follows 
directly from the Nose-Hoover equations of motion and the 
geometric requirement that the occupied volume cannot di­
verge. The sum over all Lyapunov coefficients may be re­
lated to the logarithmic rate of phase-space expansion in­
troduced in section 2, 

<A)=-g<D=I;., (19) 

and is always negative. This means that the full Lyapunov 
spectrum is not symmetric any more and is shifted to more 

• 


• 


• 
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negative values. The details of its shape depend also on the 
boundary conditions whether a homogeneous or heteroge­
neous thermostat is used [14,28]. These general results have 
been verified in a variety of nonequilibrium systems such as 
a periodic two-dimensional Lorentz gas driven by an exter­
nal field [7-9], isokinetic two-body planar shear flow 
[39-42J, conductivity in a 32-body system governed by the 
equations of motion (1) [14J, and manybody boundary­
driven shear flow in two and three dimensions [28J. 

• 

6. Strange Attractors and Irreversibility 

In the previous section it was shown that the nonequili­
brium distribution function f(r, t) for systems in nonequi­
librium steady states collapses onto a strange attractor 
which is a fractal subset of the phase spaq: 'with information 
dimension Dl smaller than the phase7space dimension D. 
Therefore its phase-space volume is not just small but van­
ishes exactly. The collapse manifests itself in a negative sum 
over all Lyapunov exponents which according to (19) means 
that the time-averaged "friction" variable (0 is always pos­
itive in accordance with the Second Law. According to (4) 
this is also the case for W, the rate of work performed on 
the system by the external perturbation X. Along an infi­
nitely long trajectory work is always converted into heat, 
never the reverse. The only trajectory capable of converting 
heat into work and consequently violating the Second Law 
would have to be located precisely on the "strange repellor". 
These repellor states could in theory be obtained by apply­
ing the time-reversal transformation (q~q,p~ -p, -( 
to all states on the attractor. By construction the repellor is 
again a strange fractal set with vanishing phase-space vol­
ume. Because of this, the probability of locating a reversed 
trajectory on the repellor is zero, not just small. Further­
more, time reversal also changes all signs of the Lyapunov 
exponents and the repellor states are characterized by a 
positive sum of all exponents and are iilherently unstable. 
Any slightest deviation of the reversed trajectory from the 
repellor immediately blows up exponentially and the system 
trajectory approaches the attractor again. 

• 

The situation can be summarized as (ollows [32, 43J: Be­
cause of the vanishing phase-space volume of the attractor 
the time-reversed trajectory cannot be localized exactly on 
the repellor, and because of the instability of the repellor 
states any attempt of localizing it approximately on the re­
pellor is doomed to fail after a time of the order of l/hK , 

where hK is the Kolmogorov entropy given by the sum of 
all positive Lyapunov exponents of the system. The geo­
metrical concept of fractal strange attractors and repellors 
in the phase space of nonequilibrium steady-state systems 
resolves the famous reversibility paradox formulated by 
Loschmidt in 1876 [44]. To counter·these objections Boltz­
mann introduced statistical arguments arguing that equilib­
rium states by far outnumber nonequilibrium states and 
cause closed systems with overwhelming probability to ap­
proach equilibrium [45]. in our geomet~ical interpretation 
[43J, which makes use of a time-reversible thermostat cou­
pled to the system, the probability of violating the Second 
Law is not just small, it actually vanishes. 
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allocation of computer time. We also thank Dr. John Hague, IBM­
UK, for his assistance with the vectorization of some of the pro­
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