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Nonequilibrium indentation simulations for two-dimensional crystals composed of up to 
1036 800=720 X 1440 atoms are described. The forces used include smoothly truncated Lennard­
Jones force laws, both with and without added embedded-atom contributions typical of copper or 
nickel. Both low and intermediate temperatures are considered over a wide range of indentor 
speeds. Typical micro hardness yield strengths for these two-dimensional materials, force divided by 
projected area, exceed 10% of the shear modulus. For the most part these simulations were carried 
out on the 64-transputer SPRINT computer at Livermore. 

I. INTRODUCTION 

Molecular dynamics is now a mature field1,2 and a 
flourishing worldwide enterprise. 3 The subject began 
with Fermi, Pasta, and Ulam's dynamical studies of one­
dimensional anharmonic chains, Alder and Wainwright's 
detailed hard-sphere studies, and Vineyard's crude simu­
lations of radiation damage in metals. In those days, be­
tween 30 and 40 years ago, 1000 atoms was a very large 
system. Today, with low-cost transputer technology and 
parallel processing, 4~6 million-atom simulations are 
feasible on a college or university budget. Billion-atom 

_ 	 simulations are on the near horizon. Such large-scale 
simulations make it possible to model the dynamical be­
havior of micrometer-sized samples of real materials on 
an atomistic basis. 
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Million-atom simulations are already large enough to 
be of use in understanding applied problems in nanome­
ter processing technology. The real challenge today is 
the accurate shaping of contoured surfaces on a scale of 
nanometers. State-of-the-art precision machining has 
progressed from relative accuracies of 10-6 m (930), to 
10-7 m (948), to 10- 8 m (1970), to today's ultimate limit 
of nanometer technology7 in just 60 years. Today it is 
possible to machine precise contours with a depth of cut 
of only two or three atomic spacings. More typically, 
contour accuracies of a nanometer are achieved with cut 
depths of order 1 /-lm. Because such atomic-scale pro­
cessing is slow, with production rates measured in square 
meters per year, the incentives for understanding are 
economic as well as intellectual. Simulating such pro­
cesses is becoming a reality as the length scales of atomis­

5844 	 ® 1990 The American Physical Society 



42 5845LARGE·SCALE ELASTIC·PLASTIC INDENTATION ... 

ftc .simulations and laboratory measurements overlap8,9 

over an increasingly wider range of length scales. 
Atomistic simulations require a phenomenological 
description of atomistic interactions. The relative ex­
pense of three-dimensional simulations and the difficulties 
in visualizing the results make it mandatory first to carry 
out thorough exploratory two-dimensional studies. 
Two-dimensional studies are described in this paper. The 
present work is a substantial step toward the near future 
of molecular simulations, three-dimensional simulations 
involving billions of atoms. 

It has long been understood that dynamical simula­
tions, as opposed to arbitrary Monte Carlo selection 
rules, are essential to understanding nonequilibrium sys­
tems. 10 Previous dynamical work on simulating the 
nonequilibrium deformation of "simple metals," such as 
copper, dates back to Vineyard's radiation-damage stud~ 
ies at the Brookhaven Laboratory. There is no shortage 

ll 14of papers - discussing the qualitative simulation of 
material failure but comprehensive quantitative agree­
ment with experiment on the basis of a fundamentally 
sound model has not yet been achieved. The theoretical 
world of one-electron atoms and dislocations governed by 
linear elastic forces bears little resemblance to engineer­
ing practice. Nearly ten years ago we began to study the 
steady plastic flow of solids at high rates of strain. 15,16 

These studies emphasized isothermal plane Couette flow. 
Extrapolating from computer-generated flows at 
terahertz and gigahertz strain rates to reach "high­
strain-rate" laboratory data at megahertz strain rates 
suggested overall agreement with the steady shear stress 
varying as a temperature-dependent power of the strain 
rate. Similar investigations have been carried out since 
that time, but without a systematic investigation of rate 
dependence, size dependence, force-law dependence, and 
temperature dependence. The transputer technology 
available today provides a qualitative change in the tools 
available for solving state-of-the-art problems in compu­
tational physics. Because engineering practice has 
reached the atomic scale this is an appropriate time for a 
reinvestigation of the fundamentals of material failure at 
relatively high strain rates and on relatively small scales. 

In the past decade new simple models for interatomic 
interactions have been developed, greatly improving our 
capability for representing the nonadditive properties of 
metals. Pair potentials cannot describe metals. There is 
typically a severalfold disparity between the energy bind­
ing a single metal atom to a crystal and the energy associ­
ated with a vacant lattice site. Likewise, the disparity be­
tween the two elastic constants C 1122 == C12 and 
C 1212 == C44 in cubic crystals can only be reproduced by 
phenomenological models incorporating nonpair interac­
tions. The "embedded-atom" concept invented by Foiles, 
Baskes, and Daw,17 provides simple, inexpensive, and 
flexible many-body potentials to model at least some of 
the nonadditive properties of relatively simple metals 
without the computational complexity of explicit angle­
dependent or long-ranged Coulomb forces. This 
enhanced capacity for realism, coupled with the still­
rapidly-increasing size of simulations, promises revolu­
tionary gains in understanding processes fundamental to 

metal cutting and deformation. The main outstanding 
gap is a simple flexible model consistent with the high 
strength of body-centered-cubic materials such as iro'­
and tungsten. 

We present here results from our two-dimensional 
study of indentation from an atomistic viewpoint. We 
characterize the dependence of indentation microhard­
ness on force law, size, indentation rate, and temperature. 
We believe that such a systematic study is much more 
useful than isolated special simulations designed to model 
some aspect of single experiments. Indentation was 
selected here as the simplest fundamental measure of ir­
reversible plastic yielding. The extension of these simula­
tions to three-dimensional billion-atom cutting and pol­
ishing processes requires the efficient manipulation and 
analysis of large data files. We expect to contribute to 
this capability by laying a groundwork in two dimensions 
where the observed phenomena and the corresponding 
analyses are considerably simpler. 

The plan of the present work includes an outline of the 
problem, in Sec. II; a description of the atomistic models, 
in Sec. III; a description of the computational implemen­
tation, in Sec. IV; with the results and conclusions de­
rived therefrom making up Secs. V and VI. 

II. INDENTATION 

The behavior of linearly elastic materials follows 
Hooke's law, 18 with the stress proportional to the strain: _ 
(T ij = ~ CijklEkl, or, in a more-abbreviated notation, 
(T = C :E. In three dimensions stress and strain are sym­
metric second-rank tensors with six independent com­
ponents. In two dimensions the corresponding tensors 
have just three independent components, xx, xy, and yy. 
The proportionality constants making up the fourth-rank 
tensor C are the "elastic constants" and can range over 
about seven orders of magnitude, from the shear modulus 
of rubber, about I bar, to the longitudinal modulus of di­
amond, about 10 Mbar. Nonlinearly elastic materials fol­
low a reversible stress-strain relation (T = (Tk) without 
the hysteresis and irreversible heating associated with 
plastic yielding and permanent deformation. 

It is usual, in continuum mechanics, to distinguish be­
tween rate-dependent "viscous" or "viscoelastic" flows 
and rate-independent "elastic" or "plastic" flows. These 
are useful idealizations for distinguishing the flow proper­
ties of brittle and ductile materials and reflect traditional 
engineering tests measuring the elastic moduli and the 
plastic yield strength. Idealized elastic and plastic behav­
ior is illustrated in Fig. 1 for the inelastic elongation of a 
bar. The initial elastic response is described by Young's 
modulus, (Txx/Exx' Typically, at strains of order 0.001, 
the linear behavior changes, and the bar suffers "plastic 
strain," retaining a permanent deformation when the 
load is removed. Such plastic deformation is irreversible 
in a thermodynamic sense, and is characterized by the ,­
conversion of work to heat as well as by strain-induced 
hardening. Although permanent deformation is funda­
mentally dependent on both rate and temperature, the 
idealization of a constant yield strength, independent of 
strain and strain rate, is a useful conceptual and compu­
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FIG. 1. Idealized elastic and plastic variation of stress (T xx 

with strain E.xx in the measurement of Young's modulus (T xx IExx 

and Poisson's ratio Eyy I Exx by extending a cylindrical rod. 
___ The unloaded residual strain, relative to the original rod length, 

indicates plastic deformation. 

tational model. We keep this simple model in mind while 
studying the more complicated phenomena associated 
with indentation. 

When a macroscopic prismatic indentor is pressed into 
a mass of material, the resulting area of deformation is 
proportional to the applied load. The load per unit pro­
jected area is a phenomenological yield stress or "mi­
crohardness." For such a measure of yield we use the 
symbol Y. In our exploratory two-dimensional simula­
tions Y is a load per unit length rather than a load per 
unit area. Our indentation geometry is shown in 2. 
We chose a circular, rather than triangular, indentor 
shape in an effort to simplify our results by minimizing 
singular stress gradients in the vicinity of the indentor 
tip. The indentor diameter was chosen to be a factor of 
10 less than the zero-temperature system width in order 
to reduce the influence of the boundary image forces on 
the energy. Our two-dimensional circular indentor would 
correspond, in three dimensions, to pressing a cylindrical 
indentor into a half space of test material. The continu­
um description of such a deformation corresponds either 
to a problem in "plane strain," with no displacements in 
the direction normal to the picture plane of Fig. 2, or to a 
problem in "plane stress," with no forces in the direction 
normal to the picture plane. 

Timoshenko and Goodier 18 describe the linearly elastic 
deformation of a two-dimensional isotropic half space by 

FIG. 2. Typical indentation geometry, shown here for a 
3200=80X40 atom workpiece. The indentor radius is 4d where 
d is the cold-crystal interparticle spacing. The bottom row of 
atoms is fixed and the left and right boundaries of the workpiece 
are joined with periodic boundaries. The time-dependent inden­
tor speed and displacement are shown in the insets. 

a point load. Despite displacements that diverge, loga­
rithmically, at both small and large r, the stress field for 
this problem is well behaved. The solution shows that 
both the mean stress and the shear stress are proportional 
to the applied load and fall off as cos(O)/r, where the 
direction of indentor travel defines the line 0=0. The 
contours of equal shear stress are circles, as shown in Fig. 
3. In the quasi static plastic case, the shear stress cannot 
exceed the yield value Y. Thus the stress should closely 
follow the elastic solution outside a roughly circular con­
tour about equal to the indentor in size and correspond­
ing to the yield-zone boundary. Within the plastic zone 
the shear stress should be relatively constant and approx­
imately equal to the micro hardness Y. The linearly elas­
tic solution for the geometry we have chosen, with 
periodic vertical boundaries and a rigid boundary at the 
workpiece base, can be very nearly described by a super­
position of the half-space solutions, equally spaced in the 
horizontal direction, satisfying the periodic boundaries, 
and with a set of "image-load" solutions symmetrically 

cr=4 

cr=2 

cr=l 

FIG. 3. Contours of equal stress, either compressive 
[-((Txx +(Tyy )/2] or shear -(Tyy )2/4+(T~y ]112, for a point 
load applied to an elastic half space in plane stress or plane 
strain, from Ref. 18. 
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arranged below the workpiece base, satisfying the rigid 
boundary conditions. The analytic elastic solution serves 
as a useful overall guide to choosing the workpiece shape 
and dimensions. A quantitative description, including ir­
reversible plastic deformation, requires exploring many­
parameter numerical solutions of the corresponding con­
tinuum dynamical equations, with both nonlinear elastici­
ty and rate-dependent plasticity. Such numerical work is 
currently underway. 19 

The simplest continuum models of material behavior 
are rate independent. An "elastic" continuum responds 
to strain with a definite stress. In the elastic case there is 
no explicit dependence of stress on the rate of deforma­
tion. A "plastic" continuum flows irreversibly in 
response to a sufficiently large shear stress, so that stress 
and strain are no longer linked by a one-to-one reversible 
constitutive relation. But still, in the simplest case of 
rate-independent plasticity, there is no explicit depen­
dence of the stress-strain relation on strain rate. Accord­
ing to either of these simple continuum models, elastic or 
plastic, or even a combination, there can be no "size 
effect;" that is, a small-size model of a large-size experi­
ment should deform in exactly the same way, with the 
same stresses and strains, provided that these mechanical 
variables are functions of the scaled coordinates 
[xs,YsJ [xIL,y/LJ. The predicted dependence of the 
energy of deformation on the scale length L is quadratic, 
in two dimensions. To see this scaling argument in more 
detail, take the equation of motion, 

d 2r du
p-=p-=V'o-(E)

dt 2 dt ' 

and introduce dimensionless "scaled" coordinates 
(rs=r/L) and a dimensionless scaled time t,=ct/L. 
Both the sound speed c and the density P are characteris­
tic material properties which do not vary with the scale. 
If we multiply the equation of motion by L and then ex­
press the result in terms of these new variables, including 
the scaled velocity Us =drjdts and the scaled gradient 
Vs V we have 

L [p ~~ 1=L [p d~~:~~~) 1=pc ::: =L [V'o-(E)] 

=Vs'o-(E) , 

establishing that the equation of motion, and hence its 
solution, is scale-independent. The only necessary as­
sumptions are that the stress is a definite function of 
strain and that the set of boundary Mach numbers, [v 1cJ 
for any moving boundaries, is scale independent. 

The simplest atomistic view suggests a different con­
clusion, based on the idea that plastic flow is the result of 
dislocation motion so that the resulting strain rate is a 
function of stress. This viscoelastic viewpoint is con­
sistent with studies of dislocation motion carried out over 
a wide range of temperatures and system sizes, both in 
two and in three dimensions. 15 From the atomistic 
viewpoint dislocations move at speeds of the order of the 
transverse sound speed in acting to reduce the shear 
stress. This viewpoint suggests an Arrhenius (exponen­

tial) relation between flow rate and inverse temperature 
with enhanced strength for smaller samples and higher 
rates of deformation. In this paper we describe our­
efforts to compare the results of direct numerical simula 
tion with these simple models. 

III. ATOMISTIC DYNAMICS 

We consider regular close-packed "triangular-lattice" 
crystals in which all pairs of particles interact with the 
short-ranged Lennard-Jones spline potential,20 which 
very smoothly connects the Lennard-Jones 6-12 potential 
to a cubic spline between the potential's inflection point 
R j and a cutoff Rm at 1.547537 times the potential's rest­
length d: 

¢LJs(r)=E[(d Ir)12-2(d /d] for r <Ri 

¢LJs(r)=4. 655 595(Eld 3 )(R",-d 

6.129377(Eld 2 )(R -d forR,<r<R",m 

Ri/d (13/7)1/6 1.108683, R ld=1.547537.m 

The three constants in the spline potential follow from 
matching the values of the potential and its first two 
derivatives at the inflection point R i' 

We also include similar calculations using an 
embedded-atom collective potential. 17 We use the 
Holian-Voter-Hoover embedded-atom potential. The 
goal was to model the vacancy energy and elastic proper­
ties of a simple metal such as copper or nickel with as 
simple a functional form as possible. We chose to write 
the additional energy as a sum, over all atoms, of a 
density-dependent potential ¢EA(p): 

'2 ¢EA(p)=2Ee '2 (Pilnpi) , 

Pi '2Pij' 
j 

Pi} (1/6e)[(R~ -r2)/(R~ _d 2)]2 , 

where the individual-particle densities [Pi J are computed 
as sums of the short-ranged quartic function which van­
ishes at the potential cutoff distance R",. In the perfect­
lattice arrangement a particle with six neighbors has an 
embedding density of lie, at which the energy is mini­
mized, corresponding to a negative binding energy of 
- 2E per particle. In this present work we match the en­
ergy minima for the two potentials by adding onto <PEA 

the usual Lennard-Jones-spline potential, multiplied by t, 
so that the perfect-crystal energies for the Lennard-Jones 
and Lennard-Jones plus embedded-atom models are iden­
tical, 3E per particle. The embedded-atom potential 
acts to drastically reduce the crystal vacancy energy. If a 
single vacancy is introduced into a stress-free static 
Lennard-Jones crystal the energy change is +3E, exactly 
the same as the binding energy per particle. In the -', 
embedded-atom case moving an atom within the crystal 
so as to create a vacancy causes the density of the six 
atoms neighboring the vacancy location to change from 
lie to 5/6e. The corresponding change in the 
embedded-atom contribution to the total crystal energy 
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<PEA is E[1OIn(S/6e)-12In(1/e)]= +0. 177E, less than 
one-tenth the embedded-atom binding energy per parti­

~le. 

The change in the elastic properties is dramatic too be­
cause the embedded-atom contribution to the zero­
temperature zero-pressure shear modulus is exactly zero. 
For the regular triangular-lattice arrangement the change 
in embedding density is quadratic in the shear strain rath­
er than linear so that the linear-elastic embedded-atom 
resistance to shear vanishes. As a result the two poten­
tials have different zero-pressure melting temperatures 
(about 0.40E/k for the Lennard-Jones-spline potential 
and 0.20E/k for the Lennard-Jones plus embedded-atom 
potential) and different elastic properties. The factor-of-2 
drop in the melting temperature corresponds roughly to 
the drop in lattice frequencies of those modes resisting 
shear. The reduction is exactly a factor v3, reflecting 
the factor-of-3 decrease in the Lennard-Jones contribu­
tion in the Lennard-Jones plus embedded-atom potential. 
It is possible to match the bulk modulus, as well as the 
binding energy, by using a Morse potential developed by 
Holian, rather than the Lennard-Jones-spline potential, 
but we have not investigated that somewhat softer poten­
tial here. 

-, 
In describing the elastic properties of solids the Lame­

constant description is a useful one because the 
triangular-lattice structure implies elastic isotropicity. In 
the plane-strain interpretation of our two-dimensional re­
sults the elastic constitutive equations have the forms 

a=A"il'uI+YJ("ilu + "ilu t) , 

a yy =AExx +(A+2YJ)Eyy , 

where the elastic displacement relative to the stress-free 
configuration is the vector u = (u x , uy ) and I is the unit 
tensor. With central forces the zero-temperature zero­
pressure shear modulus G, and the two Lame constants, 
YJ and A, are all three equal for any two-dimensional 
triangular-lattice system. We can estimate these moduli 
from the equation of state of the cold crystal. For the 
pure Lennard-Jones-spline force law these relations are 

PV/NE= 18(p/Po)6-18(p/Po)3 , 

BV/NE=2GV/NE= 126(p/Po)6-72(p/Po)3 , 

where Po is the two-dimensional zero-temperature stress­
free density, po=(4/3)1/2(m/d 2). P and V indicate the 
equilibrium pressure and volume for an N-atom crystal. 
B is the zero-temperature bulk modulus, - V(dP /dV)o' 
Thus, for the cold stress-free lattice: 

BV/NE=(A+"q)V /NE=2GV /NE 

=2YJV/NE=S4 (LJS). 

These contributions are reduced threefold III the 
Lennard-Jones plus embedded-atom case. The corre­
sponding pure embedded-atom contribution to the bulk 
modulus B =A+YJ is 4.INE/V, leading to the additional 
zero-temperature stress-free results: 

BV/NE=(A+YJ)V /NE=22.1 , 

AV/NE=13.I, 

GV/NE=YJV /NE=9 (LJEA) . 

These elastic constants are useful in comparing the re­
sults of our atomistic simulations with the predictions of 
continuum mechanics and with experimental findings, as 
is briefly discussed in Sec. V. Preliminary qualitative in­
vestigations21 showed a good correspondence with elastic 
theory. We expect to present more detailed compar­
isons19 with numerical continuum plasticity simulations 
in the near future. 

It has been emphasized6 that centered-difference 
"modified-Stoermer" methods generalizing Verlet's equi­
librium approach to nonequilibrium simulations are both 
stable and useful for relatively large time steps, 
dt =0.02(md2/E)I!2 for the Lennard-Jones-spline calcu­
lations and dt=0.03(md 2/E)1!2 for the slightly softer 
embedded-atom simulations, and also require minimum 
storage. Accordingly we have used the Stoermer form: 

for our cold-crystal simulations. At nonzero tempera­
tures a very powerful and flexible type of temperature 
control can be applied by using a modified-Stoermer gen­
eralization of Nose-Hoover mechanics. 6 In general, indi­
vidual thermostat temperatures Tj and relaxation times 
T j can be imposed on selected subsets [Xi 1of the system 
degrees of freedom by "friction coefficients" (;j. The cor­
responding equations of motion for the members of such 
a subset can include a space-and-time dependent weight­
ing function wj(x;,t): 

We call {; a "friction coefficient" in order to suggest an 
analogy with the functional form of hydrodynamic drag 
forces. The present friction coefficients have no direct re­
lation or connection to real macroscopic friction and ap­
pear in the (time-reversible) equations as temperature­
control variables. It is not difficult to show that in the 
equilibrium case, where the imposed temperatures [Tj 1 
have a common value, T, these Nose-Hoover equations of 
motion preserve Gibbs's canonical-ensemble phase-space 
distribution for an otherwise isolated system. Thus the 
friction coefficients are the deterministic mechanical 
equivalent of a thermodynamic heat bath. For simplicity, 
in our finite-temperature indentation simulations we ap­
ply a uniformly weighted thermostat, with no explicit 
space or time dependence, to all degrees of freedom. The 
time-reversible finite-difference equations, with which we 
approximate the solution of the differential equations of 
motion given above, are these: 
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IV. COMPUTATIONAL DETAILS 

The subscripts ,0, + J indicate successive times 
separated by the time step dt. New coordinates, "+," 
are first calculated using the current value "0" of the fric­
tion coefficient, ;0; then the new value of the friction 
coefficient, ;+, can be calculated from the kinetic energy 
K 0 based on these new coordinates [x + J. The long-time 
average value of the kinetic energy is NkT where T is the 
temperature and N is the number of (moving) particles 
(excluding the bottom row of fixed particles). The arbi­
trary relaxation time T is set equal to (md 2 IE) 1/2 except 
at the higher rates of deformation, for which 
T=0.Hmd 2/(';)I12. 

The calculations were made as simple as possible by us-' 
ing the short-ranged Lennard-Jones-spline potential. ~ 

our exploratory work on the eRAY computers at Liver­
more we constructed neighbor lists22 for each particle. 
For the 64-megabyte SPRINT it was advantageous to 
save space, spanning the problem geometry by a network 
of rectangular cells, each of sidelength twice the mean 
nearest-neighbor spacing, and to keep track of each cell's 
occupants by using a linked list. 22 In this way the num­
ber of storage locations per atom was reduced to about 
nine, two coordinates at each of three times and an addi­
tional three locations per particle describing the distribu­
tion of particles among cells. At the expense of program­
ming clarity it is possible to reduce the required storage 
by an additional two locations per particle2 by introduc­
ing "velocities" described by a "leapfrog" version of the 
Stoermer algorithm. Again for simplicity all of our simu­
lations were geometrically similar, with m horizontal 
rows of 2m particles each making up the workpiece, as 

TABLE 1. The work of indentation, in units of 10, is tabulated for an indentor travel distance of 
(Nd 2 /200)I12, where N is the number of particles. The force laws indicated are the Lennard-Jones­
spline and the combination of that potential with an embedded-atom potential, as described in the text. 
For both these potentials "cold" indicates the adiabatic indentation of an initially static crystal and 
"hot" indicates the isothermal indentation of a crystal at half the melting temperature. [The melting 
temperatures are O.40(E/k) for LJS and 0.20(Elk) for LJEA, respectively.] The average indentor speed, 
in units of (tlml l !2, is half the tabulated maximum value. See Fig. 2. The uncertainty in the results 
quoted is due primarily to the underlying chaotic dynamics. Comparisons of calculations with slightly 
different initial conditions that this is of the order of a few to several 

Number W(LJSl W(LJEA) 

800 Cold 0.0010 51 17 
800 Cold 0.0100 49 18 
800 Cold 0.1000 48 19 
800 Cold 1.0000 82 35 

800 Hot 0.0001 7 
800 Hot 0.0010 32 8 
800 Hot 0.0100 40 12 
800 Hot 0.1000 48 16 
800 Hot 1.0000 62 26 

3200 Cold 0.0010 172 59 
3200 Cold 0.0100 183 67 
3200 Cold 0.1000 224 72 
3200 Cold 1.0000 292 121 

3200 Hot 0.0010 127 59 
3200 Hot 0.0100 127 57 
3200 Hot 0.1000 165 56 
3200 Hot 1.0000 233 124 

12800 Cold 0.0100 877 278 
12800 Cold 0.1000 890 321 
12800 Cold 1.0000 1115 418 

12800 Hot 0.0040 507 208 
12800 Hot 0.0100 516 219 
12800 Hot 0.1000 587 241 
12800 Hot 1.0000 805 401 

41300 222001036800 Hot ............._-
1.0000 ..............--...~ ............. -­



5850 WILLIAM G. HOOVER et al. 42 

was shown in Fig. 2. The bottom row of particles was 
held fixed and periodic boundaries were applied at the 
ends of the rows. Simulations were carried out for cold 
crystals, with the minimum-energy nearest-neighbor 
spacing d, and at temperatures half the melting tempera­
ture, kT /€=0.20 for the Lennard-Jones-spline potential 
and 0.10 for the Lennard-Jones plus embedded-atom po­
tential. At these temperatures the nearest-neighbor spac­
ing was increased to correspond to the stress-free value. 
The required increases were 2.25% (LJS) and 2.5% 
(LJEA). 

In all of our simulations the total indentor displace­
ment was set equal to the indentor radius and the inden­
tor speed was a continuous function of time. See Fig. 2 
and Table I. At zero temperature the longitudinal sound 
speed in the two-dimensional Lennard-Jones-spline ma­
terial is 9(f:/m We accordingly chose loading 
schedules in which the maximum indentor speed never 
exceeded (Elm )112. The time-dependence of the indentor 
velocity, as well as the corresponding indentor displace­
ment, are shown as insets, in Fig. 2. We found that rela­
tively slow maximum speeds, of order O.Ol(Elm )112, were 
required to obtain quasi static results. 21 

The interactions between all of the particles were ex­
actly the same, but the interactions between particles and 
the indentor were taken as the repulsive part of the 
Lennard-Jones potential. We checked to verify that our 
results were insensitive to this choice. 

V. RESULTS 

In our exploratory work we found that sequences of 
pictures, particularly videotapes, were essential to a qual­
itative understanding of the indentation process. The 
low-temperature movies of elastically deforming crystals 
show motions with a strong visual resemblance to quiver­
ing Jello. Dislocations advance and retreat many times, 
and over different paths, before the final permanent de­
formation mode stabilizes. Figure 4 shows a particularly 
interesting low-temperature final configuration in which a 
wedge of material below the indentor has penetrated one 
lattice spacing into otherwise defect-free material. This 
deformation strongly resembles a plastic slip-line solu­
tion. The movies also show a marked temperature depen-

FIG. 4. Final configuration of a 3200-atom cold Lennard­
Jones crystal. The displaced wedge of material under the inden­
tor has been made visible by using a repeating sequence of four 
colors to indicate the displacements of the originally horizontal 
rows of atoms. 

dence of yield morphology with widespread flow at half 
the melting temperature and considerable, relatively rap­
id diffusion of surface atoms. 

The funqamental measured quantity in all of our simu­
lations is the time history of the work of indentation WI: 

FI is the vertical component of the force exerted on the 
workpiece by the indentor. An independent estimate of 
the indentation work follows from energy conservation, 
WI - ~W = ~E ~Q, where ~E is the change in sys­
tem energy during indentation, including the potential 
energy of interaction with the indentor, and - ~Q is the 
heat extracted from the system by the thermostatting 
forces. From the continuum standpoint the indentor 
force can be viewed as the product of a phenomenological 
yield stress or microhardness [with units 
(energy)/Oength)D in D dimensions] and the correspond­
ing projected area 3) or length W=2) to which the 
stress is applied. In two dimensions the resulting total 
work of indentation is given by the integral 

WI = J2Y(R 2_ h 2) 112dh YR 2 J2 cos2(e)d8 

YrrR 2 /2, 

where h is the height of the indentor's center above the 
horizontal workpiece surface. Thus the yield stress is ap­
proximately equal to the work done per unit area of in­
dentation. In three dimensions the corresponding yield 
stress is the work per unit volume, with the indentation 
volume equal to half the cylindrical indentor volume 
(rr I2)R 2L, with the indentor length L assumed large rel­
ative to R. 

The time history of the indentor force is plotted in Fig. 
5 for a workpiece with more than a million atoms. The 
decrease in indentor force, closely following the decrease 
in indentor speed, indicates that the response is dissipa­
tive rather than elastic. Further, the late-time absolute 
decrease in the magnitude of force as a function of dis­
placement shows that the response must be at least par­
tially viscoplastic or strain-softening, for the contact area 
increases monotonically. A portion of a typical 
configuration of this same simulation is shown in Fig. 6. 
Note the dislocations and voids formed directly below the 
indentor as well as the lack of overall symmetry between 
the left and right sides of the indentation cavity. 

The results for small and large systems are similar, 
with somewhat larger relative fluctuations and with near­
ly discontinuous changes in indentor force reflecting 
structural changes. In two dimensions the smallest size 
sample for which we found useful results was composed 
of 800 atoms. The time history of the work of indenting 
a hot 800-atom embedded-atom crystal is plotted in Fig. 
7. There are two well-defined changes of overall slope in 
the integrated work for this relatively small system. 

To interpret our results we adopt the simple yield mod­
el discussed above. We imagine that the net vertical in­
dentor force is the product of the yield strength Yand a 
perpendicular line segment against which the indentor 
force is applied, the work done is a direct measure of the 
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FIG. 5. Indentor force as a function of time and displace­
ment for the indentation of 1036800 Lennard-Jones-spline par­
ticles at half the melting temperature. The force variation for 
smaller crystals is quite similar, but with larger fluctuations. 

yield strength Y and equal to the microhardness. The 
raw results are complicated somewhat by their depen­
dence on the scaled indentor velocity, v Ie, as well as on 
the indentor size R. The dependence of stress on strain 
rate is evidently not a simple power law of the type found 
in Ref. 15 and 16. We attribute this difference in rate 
dependence to the inhomogeneity of the present strain 
field. If we use our lowest-speed energies as estimates for 
the work of quasistatic indentation the resulting estimates 
for the yield strength, Y == WIIR 2, give consistent results 

(b) 

N =1036 BOO 

0 

FIG. 6. Portion of a typical configuration of the 1 036 800­
atom Lennard-Jones-spline simulation showing damage below 
the indentor and the lack of right-left symmetry in the indenta­
tion cavity. 
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FIG. 7. Work of indentation for an 800-atom Lennard-Jones 
plus embedded-atom crystal at half the melting temperature. 
The simulation time of over one million time steps, 
40 OOO( md 2 1E )112, corresponds to about 20000 sound traversal 
times. 

for both temperatures and both force laws. The ratio of 
the cold yield strength to the shear modulus is about ·h 
slightly more for the stiffer Lennard-Jones crystal and 
slightly less for the metallic embedded-atom model. At 
half the melting temperature there is a reduction in 
strength of about 30% in both cases. The magnitude of 
the kinetic correction, for an indentor speed of order 
(Elm , varies closely with R 2, as the view of indenta­
tion as slow-speed impact would suggest. At the reason- . 
ably slow speed ofO.001(E/m)'/2, the indentation process 
takes place over about 1000 sample sound traversal times, 
adequately slow for quasistatic compression. 

Our estimated yield strengths for both the Lennard­
Jones-spline and the Lennard-Jones-spline plus 
embedded-atom potentials are plotted in Fig. 8. The data 
indicate that at sufficiently low rates yield stress depends 
mainly on strain as opposed to strain rate. Further, the 
size effect appears to be small, so small that simulations 
only 100 atomic diameters in width provide accurate esti­
mates of large-system behavior. In this connection it is 
particularly satisfying to see the nice agreement among 
the scale-model yield estimates for indentor radii of 2d, 
4d, 8d, and 72d. The data show that for indentor speeds 
exceeding 1 % of the sound velocity definite kinetic effects 
increase the effective yield strength. The empirical yield 
strength is reduced by about 30% by heating the solid to 
half the melting temperature. 

These results indicate first of all that the yield 
phenomenon in two-dimensional crystals at temperatures 
up to half the melting temperature differs qualitatively 
from the results of macroscopic hardness experiments on 
metals. There is a bewildering variety of experimental re­
sults, but it is fair to summarize these by stating that even 
the small micrometer-scale hardness values for pure met­
als are generally in the range from 0.05 to 5 gigapascals, 
that is, on the order of a percent of the shear modulus. 
On the other hand, some relatively old but careful experi­
ments, carried out by Gane and Bowden23 with a blunt 
indentor only slightly larger than that used in our 
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FIG. 8. Variation of the phenomenological yield strength, or 
"rnicrohardness," Y:= WI / R 2, with system size, temperature, 
and force law. This micro hardness is the total work of indenta­

-- tion f Fydy, divided by the square of the indentor radius. It 
is approximately equal to the applied load divided by the pro­
jected area. These microhardness values should be compared to 
the corresponding zero-temperature-and-pressure shear moduli, 
27NE/Vfor the Lennard-Jones-spline potential, and 9NE/Vfor 
the Lennard-Jones plus embedded-atom potential. 

million-atom simulations, showed a 30-fold increase in 
gold's microhardness. There is no reason to believe that 
our two-dimensional results would vary for larger scales. 
One might well expect that the accumulation of damage 
during an indentation or cutting process would provide 
sufficient defects for a realistic estimate of yield strength. 
We can only conclude that three-dimensional materials 
may actually be somewhat weaker than corresponding 
two-dimensional ones. This is possible because more slip 
directions are available for plastic flow in three dimen­
sions than in two. The additional flow mechanisms might 
well reduce the yield strength by a factor of 10. Because 
we found no qualitative difference between the behavior 
of the Lennard-Jones and embedded-atom crystals we ex­
pect that the behavior of real materials can be adequately 
modeled by short-ranged forces of the types used in the 
present work. 

We found that the computer time required for our (sca­
lar) computer program increased by nearly a factor of 20 

~ when the same program was executed on a CRAY2 com­
puter. A different vector version, written for the 65536­
processor Connection Machine24 at Los Alamos, was exe­
cuted both on a CRAY -YMP and the Connection 
Machine. The YMP vector program was perhaps ten 
times faster than the eRAY2 scalar program, but still 

somewhat slower than SPRINT and restricted to system 
sizes of less than half a million atoms. The Connection 
Machine and the SPRINT have very similar speeds when 
applied to the problem. From the economic standpoint 
the SPRINT is superior to the much more costly super­
computers and to the Connection Machine. Our compar­
isons show that the newly installed Butterfly Machine at 
Livermore is two times faster than SPRINT with 31 pro­
cessors, and probably eight times faster than 126, but this 
speed advantage of the Butterfly Machine is attained at a 
25- to lOO-fold increase in cost. SPRINT uses FORTRAN 

and can equally well be used to treat two- and three­
dimensional problems in atomistic and continuum 
mechanics and so is a very efficient role-model tool for 
solving a wide range of problems in computational phys­
ics. 

We expect to check the dependence on dimensionality 
by carrying out a three-dimensional indentation simula­
tion with a million-atom crystal using exactly the same 
embedded-atom function. Earlier simuiations1S of steady 
plastic flow in two- and three-dimensional plane Couette 
flow geometry showed no real dependence on dimen­
sionality and a stronger dependence on rate than that 
found here. 

VI. CONCLUSION 

By using relatively inexpensive transputer technology 
it is now possible to simulate the motion of one million 
atoms using conventional molecular dynamics. Storage 
requirements can be minimized by using modifications of 
the centered-difference Stoermer algorithms. 

In the atomistic simulations of plastic flow in two­
dimensional plane strain reported here we find that both 
the Lennard-Jones-spline potential and a modified 
embedded-atom potential thought to describe interac­
tions in simple metals both lead to broadly similar con­
clusions: the yield strength, or microhardness, for a 
two-dimensional triangular-lattice material is of the order 
of one quarter of the shear modulus. This result is unam­
biguous, and depends only weakly on forces, system size, 
temperature, and strain rate. We are making an effort to 
study the continuum version of this same problem nu­
merically on the SPRINT and Butterfly Machines. It 
still remains to be seen whether or not three-dimensional 
simulations will yield the somewhat lower strengths seen 
experimentally. Three-dimensional simulations are possi­
ble, so that this question should be answered soon. 
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