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ABSTRACT 

We are developing two- and three-dimensional pair-force and embedded-atom 
simulations of mechanical deformation processes--indentation, machining, and 
inelastic ballistic-impact collisions--related to current nanometer machining 
practice. Here we describe these problems and their implementation using both 
mainframe and parallel-processor computers. 

1. INTRODUCTION 

Nanometer technology IS an engineering term for the design and 
fabrication of precision parts with spatial tolerances comparable to 
microscopic interatomic spacings. Applications include the transmission of 
electromagnetic waves through large accurately-shaped optical structures as 
well as the electromagnetic storage of information using nano- (as opposed to 
micro-) circuitry. 

Macroscopic thermodynamics, hydrodynamics, and solid mechanics 
describe equilibrium and nonequilibrium states of continua. These 
disciplines make up "continuum mechanics". Their application, through 
the solution of partial differential equations, is the traditional approach to 
designing and fabricating engineering structures. Conservation of mass, 
momentum, and energy are fundamental to either the macroscopic 
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continuum aproach or to the alternative microscopic atomistic approach. 
The distinguishing feature of the macroscopic approach is the use of 
"constitutive equations" which describe the response of particular materials 
to gradients of the fundamental conserved quantities. 

The alternative microscopic approach follows the history of individual 
atoms by solving the ordinary differential equations of motion. The 
distinguishing feature of the microscopic approach is the use of action-at-a
distance force functions acting among sets of mass points. The macroscopic 
continuum approach can be thought of as describing averages of microscopic 
atomistic properties to obtain constitutive properties for regions containing 
many atoms (at least millions). But when the scale of a part or feature is 
small, as at a crack tip, dislocation, vacancy, or impurity, the continuum 
approach failsl. This failure shows up in a fundamental way in what is 
called "size dependence", the failure of material properties to obey simple 
scaling relationships. If stress were solely a function of strain then the time
and-space-dependence of the macroscopic equations of motion could be 
scaled. Structures could be built with confidence based solely on the 
performance of scale models. The fact that large specimens break under 
smaller stresses than do small specimens of identical shape indicates the 
presence of a characteristic length (the atomic spacing). 

The computer industry is profitting from miniaturization, and the 
result is a scaleup in the size of simulations it is feasible to make. It does not 
seem possible to gain much speed by further reduction of the fundamental 
computer cycle time. But what can be done is to increase, greatly, and at 
little cost, the number of degrees of freedom being treated. The increase 
makes the difference between a few-body caricature and a truly many-body 
simulation. Many small computers, working in parallel, can now 
accomplish the same tasks as can the large computers, but 1000 times more 
cheaply and in the same clock time. 

Because the crystal dislocations fundamental to plastic flow have long
range interactions, flow results can be affected by boundaries lying many 
atomic diameters away. For this reason relatively large (nanometer-scale) 
simulations are necessary to the atomistic simulations of flow and failure 
processes in materials science. Such simulations are becoming feasible. 
Because multiprocessors with millions of processors are on the horizon there 
is no doubt that billion-particle simulations will eventually be carried out, but 
still only for times up to about a microsecond. This is exactly the physical 
scale required for an understanding of shockwave deformation, fracture, and 
high-strain-rate plasticity. It is because large-scale simulations are 
becoming a reality that we feel it worthwhile to develop computational tools 
for addressing these problems. 

In this paper we describe our progress and plans. 

2. SIMULATION METHODS 

Forces and boundary conditions, together with a computer, graphic 
output, and an integration alogrithm, are the requirements for an atomistic 
simulation. Hooke's-law and Lennard·Jones forces are instructive and 
useful models for two-body "pair" forces, and we began with these two. The 
Hooke's-law crystal obeys exactly the same motion equations as does a two
dimensional bilinear finite-element representation of an elastic continuum2 , 



for which many analytic and numerical solutions are available. The 
anharmonic Lennard-Jones potential has a known and relatively-simple 
phase diagram and has been the subject of hundreds of equilibrium and 
nonequlibrium simulations ever since the development of the Monte Carlo 
method at Los Alamos after the Second World War. 

In the past ten years there has been increasing emphasis on 
simulating "real materials". Only a part of this increasing emphasis comes 
from the shift toward applied and away from basic research. Improvements 
in computation and experiments are responsible too. Increasing computer 
power makes it feasibile to use ten-parameter potential functions with angle
dependent forces in combination with disordered structures and 
sophisticated boundary conditions to model such diverse materials as water, 
glasses, and proteins under both equilibrium and nonequilibrium conditions. 
Ever-more-precise experimental tools, such as the field-ion, force-balance, 
and scanning-tunneling microscopes are providing ever better tests to 
challenge such simulations. 

Pair potentials can describe simple materials, such as the rare gases, 
relatively well. But pair potentials cannot describe directional chemical 
bonds, or account for the observed large differences between the elastic 
moduli C12 and C44, or reproduce the differences between the cohesive energy 
and the vacancy energy. Daw3 had the idea of introducing a local many-body 
potential that incorporated these features at low cost, the "embedded-atom" 
potential. 

Pair forces have been studied for nearly a century and the 
corresponding macroscopic properties are fairly well understood. Because 
the embedded-atom idea is relatively new there is not yet a correspondingly 
good understanding of the correlation between potential parameters and 
macroscopic properties such as yield and fracture toughness. But this will 
come with experience .. We have followed Daw's .lead in investigating this 
low-cost approach to metal simulation. 

The basic idea is to calculate Particle i's contribution, <p(ri), to the 
coordinate-dependent potential energy <I>({Yk}) as a function of the density at 
that particle due to the influence of the neighboring particles at {rj}: 

Particle i can be thought of as being "embedded" in a field provided by its 
neighbors. So long as this embedding is viewed as a pragmatic and 
phenomenological low-cost procedure for avoiding prohibitively-expensive 
quantum simulations, it represents the best method for predicting the 
properties of metals and their defects. 

Boundary conditions are dictated by the corresponding experimental 
situation. The boundaries can either be free of forces, or they can be subject to 
prescribed time-dependent displacements or forces. In Vineyard's 
pioneering work4 viscoelastic boundaries were used to absorb the wave 
energy incident on walls. In continuum mechanics corresponding "quiet" 
boundaries are sometimes used, The main advance in treating boundaries 
since Vineyard's work has been Nose's reversible and deterministic method5 

for introducing temperature and stress into the microscopic equations of 
motion. We have incorporated this method in our work. 
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The simplest reasonable integration method for conservative systems 
is the time-reversible centered second-difference algorithm in which the 
accelerations are replaced by differences: 

d2r/dt2 == [r(t+dt) - 2r(t) + r(t-dt)]!(dt)2. 

But because many interesting equations of motion, such as Nose's, are first
order in time, rather than second, and also because the same accuracy can 
be obtained easily with fewer force evaluations, and significantly reduced 
computer time, we prefer the classic "Fourth-Order" Runge-Kutta approach. 
With Runge-Kutta6,7, four easy-to-program estimates of dr/dt and dp/dt are 
averaged, with a resulting error, over a fixed interval of time, proportional to 
the fourth power of the timestep. For the simple second-difference scheme 
above the integration error over a fixed time interval is larger, varying as the 
square of dt. 

The recent book Numerical Recipes7 claims that the Bulirsch-Stoer 
integration method is likely the best for integrating ordinary differential 
equations. This method uses a relatively-large timestep (a complete 
vibrational period for an oscillator, for instance) and evaluates a series of 
approximate integrals over the interval, using 2, 4, 6, 8, 12, 16, 24, ... function 
evaluations. These results are then extrapolated, using a Pade (or continued
fraction) approximant, to the limit of an infinite number of evaluations. 

On the strength of this recommendation, we investigated the Bulirsch
Stoer integrator. As is usual, such an investigation is hampered by the 
failure of common library routines to allow either the order or the timestep to 
be specified. In "packaged software" these parameters are varied internally, 
at some "overhead" cost, in order to minimize the error. But, because most 
molecular-dynamics simulations proceed with a roughly constant degree of 
anharmonicity there is no reason to consider varying the order or timestep to 
improve accuracy. Diligent comparison of the packaged International 
Mathematics and S.tatistics Library (IMSL) Bulirsch-Stoer routine "IVPBS" 
with the Numerical Recipes version showed that the two do indeed, apart 
from the error and order controls, implement precisely the same method. 

A detailed investigation for the one-dimensional harmonic oscillator 
(See also Reference 6) showed that Bulirsch-Stoer approach, with optimized 
timestep and number of force evaluations, matched the performance of the 
popular Gear integrator when the required maximum coordinate error was 
set at one part per million. This level of error required about one hundred 
force evaluations per oscillator period. With fewer evaluations the Bulirsh
Stoer performance degrades much more rapidly than the others. 
Encouraged by the oscillator results we applied the same technique to 
Lennard-Jones crystals. Here the Bulirsch-Stoer performance is 
disappointing, even relative to the simple Runge-Kutta integrator, and we 
therefore abandoned the Bulirsch-Stoer technique. 

Today the Lawrence Livermore National Laboratory emphasizes 
"Supercomputing", computing with mainframe machines costing tens of 
millions of dollars. But, for molecular dynamics, this approach has the look 
of a dinosaur. Interesting low-cost alternatives are becoming available. The 
SPRINT (Systolic Processor with Reconfigurable Interconnection Network of 
Transputers) computer8 is about 1000 times cheaper than a state-of-the-art 
CRAY. It was developed as a doctoral thesis project fit the Lawrence 
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ns Livermore National Laboratory under the auspices of the University of 
he California's DavislLivermore Department of Applied Science. 

The SPRINT has 64 "Transputer" chips, each a 32-bit microprocessor 
with about three times the speed of a VAX-ll/780. The processors can be 
connected up in a variety of topologies. In the checkerboard configuration 

~t- appropriate to two-dimensional molecular dynamics simulations the 
SPRINT performed with a speedup over a single transputer between 16 andIn 
32, carrying out 1000-atom molecular dynamics simulations at the same3d 
clock speed as a CRAY-1 computer. The loss of speed, relative to that of a h. 

re single transputer, is due to the need for communication of information 

to among the processors. Because these transfers only involve neighboring 
parts of the problem, the overall efficiency of the multiprocessor should:Ie 
remain roughly unchanged with increasing problem size. 1e 

The rapid display of computed results is still' a bottleneck, even at 
Livermore. A thousand-frame ten-thousand particle movie runs for less 

~r 
than a minute, but requires the processing of about 108 particle or pixelal 
coordinates. This is too much information for a single tape to hold. The 
portability and lower cost of videotape make that medium preferable to 
conventional movies. To make a finished videotape requires several hours of 
processing effort, with a considerable portion of that time devoted to 
transporting data from one machine to another. (CRAY to V AX to STELLAR 
to a tape editor, at Livermore.) But the results are worthwhile. Cooperative 

1- motion and correlations that would be difficult to see in still pictures stand 
e out in movies. 
o 
T, 

Though presentday mathematicians may claim that Poincare 
"understood" the complexity of chaotic mechanics through his analysis of the·t 
intricacies of homoclinic points, there is no doubt that a short videotape of the.f 
Lorenz attractor provides a relatively effortless and accessible understandingo 
every bit as sure and reliable as Poincare's.1 
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FIGURE 1. Indentation of 5430 Lennard-Jones atoms at about two-thirds the melting 
temperature (kT/c: 0.30). The indentor speed increases linearly with time, up to a 
maximum value of (e/m)112, and then decreases linearly back to zero. 



All of our simulations have been two-dimensional, but we are 
developing, for the SPRINT, the straightforward three-dimensional 
extension of these models. It appears that the current 64-processor SPRINT 
should be capable of efficient molecular dynamics simulations with 50,000 
atoms. At Los Alamos Brad Holian and Art Voter expect to be able to treat 
one million particles on the 65,536-processor "Connection Machine", 

3. SIMULATION RESULTS 

We began our indentation studies with triangular and round 
indentors. See Figure 1. In testing real materials the yield strength is 
determined by dividing the applied load by the area of permanent 
deformation. We carried out sample two-dimensional calculations for a 
variety of indentor sizes and workpiece temperatures. We used both fixed
load and programmed-displacement boundary conditions. The resulting 
yield stresses (load divided by length) are size-dependent, still decreasing 
with increasing workpiece size for two-dimensional crystals with 5000 atoms. 
But the presence of many dislocations in the deforming crystal indicates that 
convergence should be possible in two dimensions. We intend to pursue 
convergence using a plane-strain (two-dimensional) representation of copper 
and to compare the resulting stress and strain fields with macroscopic finite
element simulations. 

We followed our indentation studies with simulations of the diamond
:turning process, in which strips only a few atoms thick are cut from a 
spinning workpiece through contact with diamond chips embedded in a 
resilient matrix. Computational specimens only a few atoms thick produced 
voids and extended defects at their bases, but larger specimens produced 
realistic chips, particularly when an embedded-atom model was used. The 
Lennard-Jones potential produced substantially more vapor (or dust?) in the 
cutting operation. A comparison of the two kinds of simulations is indicated 
in Figure 2. Note that in the evolution of these simulations a cutter radius of 
curvature was introduced. The embedded-atom potential we use has a 
functional form ([> = EPilnPi, with per) given by a parabola vanishing just 
short of the triangular-lattice second-neighbor separation. We intend to 
extend this work also to a more-realistic model for copper. In both the 
indentation and the cutting studies the peak deformation velocities were 
about one-tenth the sound velocity. 

FIGURE 2. Cutting of Lennard-Jones (left) and Embedded-Atom (right) Crystals 
with a cutting tool moving at approximately one-tenth the sound velocity. 
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~re The simplest impact problem is the symmetric collision of identical
lal particles. Ever since Newton's time the "coefficient of restitution" has been
{T used to describe the result of such "inelastic" collisions, that is collisions in 

which the outgoing particle speed is less than the incoming onego The ratio of 
~at these speeds is the coefficient. Because an explanation of the coefficient's 

magnitude is hard to find in the literature (despite considerable analysis by 
Rayieigh10 and experiments carried out by Ramanll ) we carried out a short 
investigation. Initial trials revealed that roughly-circular disks, containing 
a few hundred to a few thousand atoms, bounce from a mathematical hardnd wall (at which incoming atomistic velocities are reflected) with a restitutionis coefficient approaching unity at low speeds, in agreement with Rayleigh's;fit analysis. We obtained similar results for macroscopic continua using a 

a finite-element approach.;d
ng But the collisions of particles with a mathematical "wall" seemed ng unrealistic. Why not simply allow two similar particles to collide? We did, 
:lS. and the results were amusing. There was generally no "restitution" at all.mt Instead the two particles would come together and stick, permanently coldue welded together. The dynamics underlying this phenomenon is reminiscentler of the phase-space structure of the strange attractors of dynamical systemste- theory. The colliding two-particle system starts out with most of its kinetic 

energy directed. Then the collision occurs. Next, the anharmonicities and 
elastic wave reflections from the curved boundaries dephase, scatter, and 
thermalize the directed energy. The "Poincare recurrence time" required for a the momenta to again line up, allowing the particles to separate, is 

a impossibly long. It is comparable to the time requin::ld for a similar number
ed of particles in a box to simultaneously seek out one half or the other of the box.
ed Thus the coefficient of restitution studies indicated rather strongly the
he importance of impurities on the surface. Without them restitution won'the occur.
ed 

of 
 These collisional studies are not at all without applied interest. 
a Rayleigh's calculations and Raman's pendulum experiments with 

cst "Hertzian-contact" dynamics showed that the stress reached between two 
to colliding ball bearings is several kilobars, comparable to the yield strength of 
he steel. Today it appears that the corresponding experiments, properly 
,re analyzed could be a useful source of high-strain-rate constitutive models. We 

found that our embedded-atom model, again with the potential function taken 
as l:PilnPi, could plastically deform, as shown in the Figure 3, even with a 
relatively small kinetic energy, of order a few percent of the melting energy. 
We view this qualitative dependence of the deformation on the forcelaw as 
strong empirical evidence for the usefulness of the embedded-atom approach. 

:1s FIGURE 3. Snapshots of the low-speed inelastic cold-welding of two embedded-atom 
particles. 
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