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Application of massively parallel low-cost computers to the simulation of plane-strain elastic­
plastic flow is discussed. Two different approaches, atomistic molecular dynamics and 
continuum mechanics, are applied to this problem. A hybrid scheme combining the two is also 
discussed. 

INTRODuc'nON 
Low-cost massively parallel computers are ideally suited to 
the large-scale simulation of high-strain-rate elastic-plas­
tic flows. The underlying numerical methods are straight­
forward and the results can be visualized relatively easily 
with color videotape. Low-cost parallel computers are rev­
olutionizing computational physics and materials science. 
At Livermore we have applied two such machines, the 
SPRINT (systolic processor with reconfigurable intercon­
nection network oftransputers) and the Butterfly, to var­
ious simulation problems in irreversible solid-phase defor­
mation using both atomistic molecular dynamics and 
Lagrangian continuum mechanics. 1-4 

Our long-standing interest in molecular simulation5 

has been broadened by the possibilities of much larger and 
more realistic simulations including hybrid numerical 
schemes which combine the atomistic and continuum 
viewpoints. Here, we describe both parent approaches, mi­
croscopic and macroscopic, and offer a preview of their 
combination. 

Alder and Wainwright'S pioneering molecular dy­
namics simulations were purely Newtonian, and used un­
realistic hard-sphere and square-well force laws in order to 
save computer time. By 1959 machines were faster. Vine­
yard used nonequilibrium boundary conditions in simulat­
ing radiation damage in metals. Vineyard used purely re­
pulsive force laws too. But these were more realistic, being 
continuous rather than impulsive. In 1964 Rahman6 was 
able to simulate a liquid phase using continuous forces in­
cluding both repulsions and attractions. 

A systematic approach to nonequilibrium molecular 
dynamics with continuous forces began about 1970 when 

Ashurst set out to simulate steady-state nonequilibrium 
flows of momentum and energy in nonequilibrium liquids. 
In these flows a few hundred bulk atoms were driven by 
smaller numbers of atoms confined to boundary heat and 
momentum reservoir regions.5 By 1980 these nonequilibri­
um simulation methods were being used to generate and 
characterize strong dense-fluid shock waves involving as 
many as 4800 atoms. 7 

In 1984 Abraham pioneered the simulation of big sys­
tems. This work, with up to 161 604 atoms,8 was a concep­
tual breakthrough. Today "massively parallel" computa­
tion makes such a simulation a routine reality. Parallelism 
is achieved by spanning the problem, which can be either 
atomistic or continuum, with a computational grid, assign­
ing the contents of the "zones" so defined to individual 
processors. Million-atom simulations3

•
9 have already ap­

peared. Billion-atom simulations should follow soon, with 
revolutionary impact on the ability ofcomputing machines 
to simulate the processing of real materials. 

Macroscopic continuum simulations are more famil­
iar and widespread than microscopic atomistic ones. The 
finite-element and finite-difference approaches to engi­
neering design were among the first applications of fast 
computers. These numerical approaches have been applied 
to challenging problems in the design ofaircraft, buildings, 
ships, and weapons for half a century. Until recently, the 
relative complexity of atomistic systems coupled with per­
sistent uncertainties in the underlying forces prevented a 
corresponding microscopic approach from contributing to 
engineering design. Through enhanced computational 
power and more imaginative models of atomic forces, the 
situation is changing rapidly. A combination ofcontinuum 
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and atomistic simulations appears to be within our grasp. 
The trail to such combinations has already been blazed by 
various quasistatic studies of lattice defect structures. 10 

De Groot's SPRINT computer is shown in Fig. 1. 
SPRINT is a pioneering realization of the promise oflow­
cost parallel computationY The 1988 version of this ma­
chine included 64 transputer processors and cost about 
$40 000 dollars to build. A million-atom time step requires 
about a minute, using the Lennard-Jones-spline potential 
discussed in Sec. II, and about 80 s for the embedded-atom 
modification appropriate to simple metals such as copper. 
The transputers in SPRINT execute instructions in 
FORTRAN, PASCAL, and c, and have a storage capacity of 
one-quarter million 32-bit words each. Current chips and 
the next generation of transputers are both an order of 
magnitude faster than the transputers in SPRINT. A 
straightforward scaling of the parallelism used in SPRINT 
should lead soon to teraflop computers. 

These computational developments have been paral­
leled by revolutionary conceptual developments in under­
standing the solutions of the large systems of ordinary dif­
ferential equations encountered in nonequilibrium 
statistical mechanics.4 Here, we begin by reviewing the 
principles underlying both the atomistic and the continu­
um simulations. We then present a sampling of our defor­
mation results and a preview description of our planned 
hybrid approach, which combines the microscopic and 
macroscopic techniques. 

FIG. 1. The SPRINT computer at Livermore. This machine contains 64 
transputers (small computers) and matches the performance of a modern 
eRAY -YMP supercomputer at greatly reduced cost. 
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I. FUNDAMENTAL PRINCIPLES OF COMPUTER SIMLILATION4 
Both the microscopic atomistic picture and the macroscop­
ic continuum picture rely on differential equations of mo­
tion describing the time-and-space developments of the 
system coordinates. Of the two the atomistic picture seems 
simpler because it is based on ordinary differential equa­
tions of motion in which time is the only independent 
variable: 

Fatomic + Fboundary 

+ Fdriving' (1)+ 
The interparticle atomic forces Fatomie are the basic ingre­
dient of the atomistic picture. Additional boundary and 
driving forces can be used to confine the system particles 
and to perform thermodynamic work on them. Likewise 
constraint forces can be used to force definite instantaneous 
or time-averaged values on time-and-space-dependent 
fluxes and state variables. Such constraints are necessary 
whenever a steady nonequilibrium process is considered. 
Extending and constraining Newtonian mechanics by add­
ing thermostats is required whenever heat flow must be 
simulated. Here, we again3 use Nose-Hoover thermostat 
constraints4 to impose a desired temperature on our sys­
tem. As a bonus, this particular mechanical description of 
non equilibrium heat flow also provides an exact micro­
scopic demonstration of the macroscopic Second Law of 
Thermodynamics. 4

.
12 Only those flows of heat consistent 

with the Second Law can provide stable solutions of the 
Nose-Hoover equations of motion (1); see Eg. (7) below. 

The continuum picture is based on partial differential 
equations: 

dlnp = _ V'v, V-P, 
dt 

pi? = - V·Q - P:Vv, (2) 

in which both time and space vary independently. Here, x 
is the inertial-frame coordinate, v is the velocity, v=x, Pis 
the pressure tensor, and Q is the heat flux. In (2) p is the 
mass density and e is the energy per unit mass. In general, 
these hydrodynamic variables depend not only on time but 
also on space. 

If the spatial gradients are sufficiently small and fluc­
tuations can be ignored, then the two approaches, micro­
scopic and macroscopic, become equivalent. The atomistic 
description can be linked to the continuum one through the 
constitutive "equation-of-state" relations which distin­
guish one material from another. These relations describe 
the dependence of the comoving momentum and energy 
fluxes, P and Q, on the strains, strain rates, and tempera­
ture gradients. To eliminate the effect of fluctuations, the 
microscopic behavior needs to be averaged, either over an 
"ensemble," equilibrium or steady-state, or, equivalently, 
over time. The simplest example of such an averaged mac­
roscopic constitutive relation is Fourier's law relating the 
heat flux to the temperature gradient: 

Q KVT. (3) 

To begin, choose a form for the interatomic forces and con­
sider the corresponding material in a state with fixed den­
sity and fixed average temperature. By carrying out atom­

http:Thermodynamics.4.12


is tic simulations based on the equation of motion (1) and 
measuring the dependence of the heat flux vector Q on the 
temperature gradient VT, the macroscopic thermal con­
ductivity K defined by (3) becomes a known function of 
material and state. Likewise, by measuring stress, 
(1= - P, as a function ofdensity, energy, and shape, atom­
istic simulations can provide the constitutive information 
required to solve the continuum equation of motion. The 
simplest constitutive relation for stress describes an elastic 
solid: 

(1= [ - Peg (p,e) + AVoU] I + 77[VU + VU'], (4) 

where the stress tensor (1 is minus the pressure tensor P, 
u= x - Xeg is the elastic displacement, and A and 77 are the 
elastic solid's Lame constants. The equilibrium pressure 
Peg as well as the Lame constants, all depend on the mass 
density p and the energy per unit mass e. 

In our own work in support of the Precision Engineer­
ing Program at the Lawrence Livermore Laboratory we 
have continued our study3 of the prototypical plastic-flow 
experiment shown in Fig. 2, the two-dimensional analog of 
the standard three-dimensional hardness test. Plastic flow 
is an irreversible change of shape induced by stress anisot­
ropy (shear stress). By including also the continuum ap­
proach, we explore both the correspondence between the 
microscopic and macroscopic approaches to simulation 
and the con vergence ofboth methods to the large-system or 
fine-mesh limits. 

The two-dimensional version of the problem was se­
lected in order to simplify visualization. Three-dimension­
allaboratory hardness tests involve pressing a spherical or 

-y-Vy 

Time Time 

FIG. 2. Plane-strain indentation. The vertical indentor velocity Vy has a 
piecewise-linear time dependence. The maximum value of the indentor 
travely is chosen equal to the indentor radius R. In the three-dimensional 
analog of this two-dimensional plane-strain problem, a half-space is in­
dented by a cylindrical indentor with its axis parallel to the workpiece 
surface. 
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FIG. 3. Elastic work of indentation W for similar small-deformation sim­
ulations of an elastic workpiece using both molecular dynamics and con­
tinuum mechanics. The total indentor travel in each of these simulations 
is only R /10, where R is the indentor radius. The continuum simulations 
model half the workpiece with 30X26, 45X39, 60X52, and 90X78 
zones. The molecular simulations model the entire workpiece with 
60 X 30, 100 X 50, and 180 X 90 atoms. 

prismatic indentation tool, the "indentor," into the work­
piece being tested, with a known force. Typical tests are 
thermodynamically "quasistatic," so that the kinetic ener­
gy of the indentor can be ignored. The applied force per 
unit area of the resulting cavity is then a measure of the 
material's resistance to permanent plastic deformation. 
This phenomenological approach furnishes a useful repro­
ducible characterization of solids' resistance to flow. 

The correspondence of the two approaches, micro­
scopic and macroscopic, is shown for the elastic case in Fig. 
3. In that corresponding-states plot, d represents both the 
atomic diameter, at which the force vanishes, and the con­
tinuum zone width. The common value of the intercept, 
approximately 0.15, shows that the two different kinds of 
spatial discretizations of the continuum-interacting 
atoms or Lagrangian zones-lead to the same elastic mod­
ulus in the continuum limit. In this limit the atomic diame­
ter and the Lagrangian mesh size are small relative to all 
macroscopic lengths. The results in the figure suggest that 
the deviation from the continuum result is inversely pro­
portional to the number of degrees of freedom used to de­
scribe the problem. 

II. ATOMISTIC SIMULATIONS 

We have developed a computer model for the simulation of 
plane-strain indentation, with the basic geometry and 
boundary conditions indicated in Fig. 2, and began by 
studying a piecewise-smooth pair potential CPljs chosen to 
match the Lennard-Jones potential for separations less 
than the inflection point: 

r < r, ~ CPljs = 4E((~)'2 - (~r) 
=E(( ~)12 - 2( ~r), 

ri <r<rm ~CPljs = 3.292 0028 (E/cr'l)(rm - r)3 

-4.86489008(E/cr)(rm _r)2, 

COMPUTERS IN PHYSICS VOL. 6, NO.2, MAR/APR 1992 157 



6: = (27 )1/6 = 1.24445506, 

~ = 1.737051 787. (5) 
(J' 

In our atomistic simulations the indentor is characterized 
as a smooth repulsive force center with an effective radius 
R. With an atomic "radius" equal to half the equilibrium 
spacing d==2 1/ 6 the force between an atom separated (J', 

from the indentor by a distance r less than R + [d 12] was 
calculated by computing an interaction potential 
tprep (r + [d 12] - R) based on the purely repulsive part of 
the Lennard-Jones potential. In the present work we em­
phasize a particular weighted average of this "Lennard­
Jones-spline" potential 13 CPljs with an embedded-atom 14 in­
teraction. 15 The relative weights we use to combine the pair 
and embedded-atom potentials furnish a useful description 
of the vacancy and defect energies exhibited by typical met­
als such as copper, gold, nickel, and silver: 

ze€ 
<Dea = 'Lcpea (p) = - 'L(Pi lnpi)' Pi = 'LPij'

2 

(6) 

The coordination number z is 6 in two dimensions and 12 in 
three. For either type of force law, Lennard-Jones-spline 
and ( 1/3) Lennard-Jones- spline + (2/3) embedded­
atom, we found3 that the energy density WIR 2 required to 
indent a two-dimensional perfect crystal is about one-sixth 
the shear modulus for a plane-strain indentation with a 
circular indentor. Both the structure of the underlying 
equations of motion and the solution methods are no differ­
ent in three dimensions where the present simulations cor­
respond to periodic cylindrical indentations ofa half-space. 

The atomistic simulations depend upon temperature 
as well as force law and indentor velocity. In order to simu­
late isothermal deformation, we have incorporated Nose­
Hoover constraint forces4 Fe in all out finite-temperature 
simulations. These constraint forces Fe == - {;p incorpo­
rate friction coefficients {s'} which satisfy feedback rela­
tions forcing the time-averaged values ofthe corresponding 
kinetic energies {K(t)} to agree with specified values 
{(K) }: 

P=F-t;p, t= [(K I (K») -Illr. (7) 

FIG. 4. Indentation of a 12 800·atom Lennard-lones + embedded·atom workpiece a t half the melting temperature. The indentor radius and depth of 
indentation are 40 d. The maximum indentation speed is (Elm) 112 . 
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In finite-difference form the differential equations of mo­
tion become:2

,4 

m(xi- - 2xo + x _ )Idt 

=Fo-m{;o(x+ -x_ )/(2dt), 

--=-.:_-=-{;_-_) _ ~Ko/(K) 
2dt - r 

2:m(x -x )2


Ko=--........:.---- (8)

8dt 

where the subscripts { - ,0, + } indicate thetime sequence 
{t dt,t,t + dt} In two dimensions the N-body mean ki­
netic energy (K) is equal to NkT. 

The atomistic simulations show an interesting de­
pendence of cavity shape on force law, deformation rate, 
and crystal structure. We began our investigations with 
perfect crystals. We found, for the geometry shown in Fig. 
1, that crystals containing 800 atoms or more were suffi­
ciently large for the quasi static work of indentation to be 
roughly described by the macroscopic yield strength. The 
shape of the indentation cavity is slower to converge, at 
least at the higher speeds, for which we simulated million­
atom systems. 

It is particularly interesting that the initial mirror 
symmetry of the atomistic indentation problem can be 
completely destroyed by thermal fluctuations. The under­
lying chaotic atomistic dynamics can have macroscopic 
consequences, This point is illustrated in Fig. 4, in which 
the shapes of the right and left sides of an initially symmet­
ric indentation specimen are qualitatively different. 

Closeups of the region near the indentor reveal that a 
disordered layer of atoms, many atomic diameters thick, 
forms along the margins of the indentor-workpiece inter­
face. It may be that this amorphous region is the two­
dimensional analog of the Beilby layer l6 found at the sur­
face of cold-worked three-dimensional metals. Despite the 
disordered appearance, thermodynamic melting seems to 
be ruled out by the relatively low temperatures involved, 
halfthe melting temperature in most ofour work. Elastic­
plastic continuum simulations, on the other hand, show a 
relatively featureless deformation. 

The sixfold rotational symmetry of the triangular-lat­
tice structure implies an isotropic linear-elastic response to 
small deformations, but the large-deformation nonlinear 
response of the same structure necessarily reflects the un­
derlying orientation of the crystal planes. To evaluate the 
consequences of crystal structure, we have carried out a 
series of simulations on amorphous (polycrystalline) sol­
ids as well. 

Amorphous atomistic solids are easy to make, follow­
ing a suggestion furnished by Holian, who has synthesized 
and studied such solids at Los Alamos. He begins with a 
mechanically unstable lattice, such as the square lattice in 
two dimensions or a simple cubic lattice in three, and al­
lows the unstable lattice to relax, Figures 5 and 6 show 
amorphous crystals grown in this way, both before and 
after plastic deformation. Following a suggestion from 
Voter, also at Los Alamos, and Holian, we have assigned a 
color to each atom in the amorphous crystal by working out 
the average inclination of its interacting neighbors with re­
spect to the x axis. The averaged angle a, defined by the 
relation tan(a) =L sin(60)/L cos(60), is converted to a 

color, The factor 6 in the sums over interacting neighbors 
takes the sixfold rotational symmetry of the triangular-lat­
tice structure into account and results in a "coloring" angle 
a, which ranges from 0-21T. 

An amorphous solid, composed of Lennard­
Jones + embedded-atom material was relaxed for a few 
atomic vibrational periods prior to indentation, as shown 
in Fig, 5. Figure 6 is a closeup of a fully indented amor­
phous workpiece, Figure 7 shows the corresponding defor­
mation ofan initially perfectly crystalline triangular-lattice 
workpiece using exactly the same atomistic forces, Both 
cases have been colored to show the post-indentation grain 
structure. 

Table I includes results of molecular dynamics simu­
lations of both crystalline and amorphous solids, both us­
ing the same force laws and the same deformation sched­
ule. We represent our results in terms of an effective 
microhardness or yield strength given by the specific work 
ofdeformation, W IR 2, whereR is the indentor radius. The 
results marked n in the table correct earlier embedded­
atom simulations3 carried out at half the melting tempera­
ture. The present warm embedded-atom simulations use 
the correct 2.5% linear expansion from the cold-crystal 
lattice spacing. The previously published values for these 
entries mistakenly used a linear expansion only 0.75%, 
causing a significant error in the work of indentation. 

In the crystalline case the data in Table I show that 
3200 atoms provide a reasonable estimate of the specific 
work of indentation, in two dimensions. The number de­
pendence is somewhat larger in the amorphous case, with 
the specific work of deformation for 12800 atoms still ex­
ceeding the apparent large-system limit by nearly a factor 
of2. The work ofdeforming the amorphous solid lies about 
30% below the corresponding perfect-crystal deformation. 

The main difference between the crystalline and 
amorphous simulations is that the appearance of the de­
formed solids is much less regular in the amorphous case. 
The data in Table I show that the work of deformation is 
insensitive to the details ofthe crystal structure, We believe 
that this condition reflects the highly disordered nature of 
the cold-worked solid inherent in large-scale plastic defor­
mation. This fortunate circumstance should simplify the 
matching of the atomistic and continuum descriptions, our 
ultimate goal. We turn next to a continuum description of 
the same plane-strain deformation problem, 

III. CONTINUUM SIMULATIONS 
There are two common numerical approaches to continu­
um deformation problems. The "Eulerian" approach uses 
a fixed laboratory-frame coordinate system, through 
which the material flows. In this case it is natural to consid­
er the Jixed-in-space time variation of the field variables, 
density, stress, and energy: {JpIJt,JaIJt,JeIJt}. 

To correlate continuum results with atomistic simula­
tions, which describe the flow oflabeled particles in space, 
the comoving "Lagrangian" approach is more natural. In 
this case a comoving grid representing the material and sub­
ject to suitable external boundary conditions is followed in 
time and is described by the Lagrangian comoving (or "to­
tal" or "substantive") derivatives, {dpldt,da I dt,del dt}. 
In addition to the underlying conservation equations for 
mass, momentum, and energy, 
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FIG. 5. Frames 1, 6, 25, and I()() from a color videotape showing the annealing ofa mechanically unstable square lattice. Frame 100 
lmorphous configuration for an indentation simulation involving over a million atoms; see Fig. 6. The shading of each atom is determ 
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FIG. 5. (Continued.) 
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FIG. 6. Final configuration showing the indentation of an amorphous Lennard- lones + embedded-atom workpiece. The temperature is half the melting 
temperature and the maximum indentor velocity, (Elm) 1/ 2, is about one-tenth the longitudinal sound velocity. 

dlnp = _ V.v pX==:V.(1==: - V.p, 

dt ' 


pi! = - V·Q - P:Vv, (2) 
a well-posed continuum simulation requires constitutive 
relations expressing the pressure tensor and heat flux in 
terms of the field variables and their gradients: 
{p,v,e,Vp,V·v,Ve} . If the relationship between stress and 
strain were an elastic one, with (1 = K( E) :E, then a numeri­
cal simulation could be based on the simplest possible con­
tinuum representation, triangular zones. Within the ith 
triangular zone, the displacement vector U i ==: x - Xeq 

would then be taken to vary linearly in space, as given by 
the three vectors Ai> Bi> and C i characterizing the zone 

U = A + Bx +Cy. (9) 

In principle, in the absence of singularities, mesh refine­
ment eventually reaches a microscale at which constant 
stress and strain are reasonable approximations within ev­
ery zone. Thus this triangular-zone approach to elastic 
problems eventually converges to an accurate solution. 

Plastic deformation is more complicated . The com­
plexity reflects the atomic-scale discontinuities in flow due 

to the motion of dislocations. 17 When real materials are 
deformed beyond the "elastic limit" dislocations flow, and 
removing the load reveals that permanent "plastic" defor· 
mation has occurred, the original shape is not recovered. 
The simplest idealized continuum description of this defor· 
mational plastic flow ignores the dislocation flow and in· 
corporates the concept of plastic yielding, with a plastic 
material undergoing shear-induced inelastic "plastic" de· 
formation, on a characteristic timescale 7, whenever the 
shear stress reaches a yield stress Y==am a." or, equivalent· 
ly, whenever the elastic shear strain reaches a limiting val­
ue Emnx == Y I Tr 

=> dashen r 

dt 

[ Y - ashenr ] 

7 
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FIG. 7. Indentation ofa perfect Lennard-Jones + embedded-atom triangular-lattice crystal under boundary conditions identical to those of the amor­
phous-solid deformation shown in Fig. 6. 

a~ a~ a~ a~ 
Cxx == ax' cxy == ay + ax' Cyy == ay· (10) 

In traditional engineering texts, "yield strength" Y refers 
to the longitudinal stress/strain ratio at which plastic flow 
begins in extending a cylindrical bar with vanishing trans­
verse stresses. For the case of equal Lame constants 1] = A, 
a brief(three-dimensional) calculation shows that the 
stress at which yield begins is (51]/2)cxx , where 
C.n = - 4cyy is the corresponding maximum elastic longi­
tudinal strain. Thus, for example, a yield value 
Csilc"r = 0.02 with Y = 0.021] in our two-dimensional 
plane-strain calculations corresponds to a three-dimen­
sional yield strain cxx = 0.008 in three dimensions. In ei­
ther case the "yield strength" would be Y = 0.021]. 

The "invariant" combinations of stress and strain 
components just given are uniquely independent of the ori­
entation ofthe x and y axes; that is, arbitrary rotation of the 
coordinate system leaves the numerical values 
of [U;y+(1I4)(uxX -Uyy )2]1/2 and [c;y+(cxx 
- Cyy )2] 1/2 unchanged. Thus the corresponding [von 

Mises] flow rule is said to be "isotropic." The physical 
relaxation time 7 is of the order of nanoseconds to picosec­
onds and corresponds to the time period required for dislo­
cations to move, or first to nucleate and then to move, so as 
to relieve shear stress. Because most flow processes are 
driven at subsonic rates well below the dislocation velocity 
it is reasonable to make the simplest choice, choosing the 
relaxation time 7 equal to zero, so that the shear stress 
cannot exceed the·shear strength Y. In order that the stress 
relaxation be independent oforientation, the plastic relaxa­
tion ratios are as follows: 

[ auxx'auxy ,auyy ] 

ex [(uxx - U yy )' + 2uXY ' (uyy - u xx )]· 

Continuum simulations of plastic flow require a computa­
tional mesh capable of representing incompressible flows. 
The simple triangular zones that work so well for elastic 
problems are not sufficiently flexible to represent plastic 
flow. IX To see this, imagine a region spanned by a highly 
refined grid of N points dividing the region into 2N contig­
uous triangles. Idealized constant-volume plastic flow 
would then require 2N constant-volume constraints, one 
for each triangle. Thus triangular zones can be ruled out 
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TABLE I. Results for the indentation ofamorphous (A) and single-crys­
tal (C) indentation specimens using nonequilibrium molecular dynamics. 
Most data refer to the combination of Lennard-Jones-Spline and embed­
ded-atom potentials described in Sec. 2. The single-crystal results corre­
spond to m rows each of 2m atoms with an indentor radius 0.2 m. The 
amorphous polycrystalline solids were formed from a square lattice of m 
rows of 2m atoms each with the amorphous density chosen to match the 
stress-free density (square-lattice interparticle spacing 0.96d). The initial 
state is stress-free and the reduced temperature, kTIE= 0.1, is main­
tained at half the melting temperature by Nose-Hoover thermostat forces 
with a characteristic response time.,. = 0.1 (md2IE) 112. The indentor ra­
dius is R. The perfect-crystal zero-temperature zero-pressure interparti­
cle spacing is d, corresponding to a mass density 
p(d2/m) = (4/3) 112 1.1547. At half the melting temperature, the lin­
ear expansion for the embedded-atom simulations is 2.5%. The results 
marked n correct previous values from Ref. 3, which were about 15% too 
large because a linear expansion 0.75% was inadvertently used. All other 
results in Ref. 3 used the correct zero-stress density. 

System size Rid 

3200A 4 1.0 4.27 
3200C 4 1.0 6.13 n 

3200C 4 0.1 2.96" 
3200C 4 0.01 2.80" 
3200C 4 0.001 2.36" 
12800A 8 1.0 4.42 
12800C 8 1.0 4.36" 
12800C 8 0.1 3.30" 
12800C 8 0.01 2.66" 
12800C 8 0.004 2.46" 
12800C 8 0.001 2.23 
12800C' 8 0.001 3.89 
12800Cb 8 0.001 13.6 
12800CLJ 8 0.001 7.41 
51200A 16 1.0 3.31 
51200c 16 1.0 4.21 
204 800A 32 1.0 2.75 
204800c 32 1.0 3.74 
1036800A 72 1.0 2.49 
1036800C 72 1.0 3.40" 
1036800c· 72 1.0 5.24 
1036800Cb 72 1.0 13.3 

• Calculation carried out at zero temperature. 
bCalculation carried out at zero temperature using pure Lennard-Jones 

spline potential. 

because the number of constant-volume constraints and 
the number of "degrees offreedom" both become equal, to 
2N, as the mesh is refined by increasing N. The physical 
consequence of this equality is called "locking" and makes 
plastic flow impossible with simple triangular elements. 
The same stability of the triangular shape is responsible for 
the use of triangular strut arrays in truss bridges and 
towers. More complex elements are required to represent 
plastic flow. Quadrilateral zones [one for every mesh point 
as N is increased] furnish twice as many degrees offreedom 
as constraints and so provide the simplest model of incom­
pressible flow. 

Some treatments of quadrilateral zones can exhibit 
stability problems. An elementary treatment using quadri­
lateral zones leads to "hourglass" instability, a form of 
shear deformation shown in Fig. 8. Because the hourglass 
deformation, with txya:xy, has a zone-averaged shear 
strain zero, there are no restoring forces, and a simple zone­
averaged quadrilateral simulation is unstable. 
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FIG. 8. Hourglass instability characteristic of quadrilateral zones in 
which stress is calculated as a zone average. This instability can be avoided 
by computing local stress averages, one for each zone quadrant, or by 
introducing artificial viscosities; we used local stress averages. 

In our work, we have used quadrilateral zones in order 
to represent plasticity, but with four separate shear-stress 
tensors, one for each quadrant ofeach zone, to avoid hour­
glass instability. Each zone has associated with it four sepa­
rate elastic shear-strain tensors {t - tyy,txy =tyx }, onexx 

for each of the four corners of the zone, from which the 
local shear deviation of the stress tensor from the average 
equilibrium stress can be calculated. The four strain ten­
sors are calculated as integral averages of finite-difference 
representations ofthe following differential expressions for 
the shear strain rates: 

(11 ) 

The integrals, averaged over quadrants ofeach zone, can be 
approximated by counterclockwise contour integrals: 19 

avx 

(
 ax 

avy ) dx=f f (~; ay A 

= ~f(vxdY+Vydx), 

( . ) _ (avx avy )
t44 - --+­

ay ax 

y=f f (avx + av ) dx 
ay ax A 

~ f (Vy dy Vx dx), (12) 

where the area of the quadrant is indicated by A. The veloc­
ity field in each zone is assumed to vary isoparametrically 
with x and y, so that the four strain-rate tensors can be 
expressed in terms of the velocities of each zone's nodal 
points. The bulk contribution to the stress tensor is com­
puted using the total zone area and the bulk modulus.3 For 
instance, the energy and pressure for a static lattice gov­
erned by a two-dimensional nearest-neighbor Lennard­
Jones potential interaction are 



FIG. 9. Finite-difference indentation ofan elastic-plastic workpiece using 
quadrilateral zones and the nearest-neighbor Lennard-Jones equation of 
state. This 3120-zone simulation has a maximum indentor speed 
0.25(c/m) 112, and indentor radius 30d, where d is the zone width, and 
"m" = 0.04. 

I}> =3€[(~r 2(~)3], 
(13 )N Po Po 

PeqV=18€[(~r -(~r]·
Po Po 

In this pair-potential case the two Lame constants are 
equal and are related to the two-dimensional bulk and 
shear moduli as follows: 

Bw 
(14) 

2 

In each zone these contributions to the stress are used to 
accelerate the nodes. The full calculation proceeds by com­
puting {r,r,E,(,} from {r,r,E,£} by following these steps. 

,1=7]=G=-= 

( 1 ) Fix initial conditions, specifying r, r, E, and E, and 
the boundary conditions. Typically the initial velocities, 
strains, and strain rates all vanish, except at the indentor­
workpiece boundary. 

(2) Compute new coordinates r from nodal and 
boundary velocities r. 

(3) Compute new elastic zone strain tensors E, and 
stress tensors (J', from the strain-rate tensors E. 

(4) Calculate the nodal accelerations r from neigh­
boring zones' dilational stresses and each zone quadrant's 
corner-shear-stress tensor. 

(5) Compute zone strain-rate tensors taking plastic 
strain relaxation into account so that no shear stress ex­
ceeds the elastic limit. 

(6) Return to step (2) until the simulation is 
complete. 
The differential equations for r, r, E, and Ecan be solved by 
using the classic fourth-order Runge-Kutta integration or 
by the simpler centered-difference approach. We have used 
both methods but finally adopted the centered-difference 
approach because it minimizes storage. For the appearance 
of a typical simulation, see Fig. 9. 

The boundary conditions for the continuum simula­

tion include a "free" boundary, at the workpiece top, verti­
cal "roller" boundaries along the central symmetry line 
and the vertical boundary, and a "fixed" boundary at the 
workpiece base. The interaction between the workpiece 
and the indentor was frictionless, described by an elastic 
purely repulsive Hooke's-Law pair interaction between the 
indentor mass and the horizontal surface nodes. The result­
ing vertical component ofthe summed indentor forces were 
then integrated with respect to displacement, so as to mea­
sure the work of indentation, given in Table II. 

The numerical convergence of this continuum ap­
proach seems slower than the atomistic one. Without con­
siderable testing, we cannot be sure that our numerical 
technique converges to the solution of the continuum Eqs. 
(2) and ( 10). In Fig. 10 (top), we show the dependence of 
the calculated effective yield strength W /R 2 on the mesh 
size d. Just as in the elastic case, the coarse-mesh data indi­
cate a quadratic mesh dependence. We subsequently dis­
covered that much finer meshes, shown in Fig. 10 (bot­
tom) and with as many as 600 000 Lagrangian zones, 
indicate an asymptotic logarithmic dependence on zone 
size, probably a consequence of a stress singularity at the 
indentor. Typical data points are included in Table II and 

TABLE II. Results for the indentation of specimens using Lagrangian 
finite-difference approximations to the equation of state. The maximum 
shear strain is "max' In these continuum simulations, symmetry was used. 
The number of dxd Lagrangian zones spanning one-half the workpiece 
area is specified. A typical time step is 0.005 or 0.01 (md2

/,,) 112. Calcula­
tions use an indentor force constant 100. Because square zones of side­
length d and mass m were used, with unit mass density p(d2 /m), the work 
values in this table have been multiplied by 1.1547 (4/3)1/2 and are 
directly comparable to the atomistic results given in Table I. The distance 
traveled by the indentor is equal to the indentor radius R. The computer 
time required for the last entry in the table was approximately 400 h. 

Zones Rid "max [m~••J") 1/2 

780 3 0.02 1.00 3.67 
780 3 0.02 0.50 3.84 
780 3 0.04 0.50 8.30 
780 3 0.08 1.00 18.40 
780 3 0.08 0.50 17.96 

1 755 4.5 0.02 1.00 4.63 
1 755 4.5 0.02 0.50 4.46 
3 120 6 0.02 1.00 4.92 
3 120 6 0.02 0.50 4.65 
3 120 6 0.04 0.50 9.48 
7020 9 0.02 1.00 5.20 
7020 9 0.02 0.50 4.85 

12480 12 0.02 1.00 5.27 
12480 12 0.02 0.50 4.88 
12480 12 0.04 0.50 9.91 
49920 24 0.02 1.00 5.50 
49920 24 0.02 0.50 4.99 
49920 24 0.02 0.25 4.97 

199680 48 0.02 1.00 5.45 
199680 48 0.02 0.50 5.08 
199680 48 0.02 0.25 5.08 
296595 58.5 0.02 0.125 5.10 
312000 60 0.02 1.00 5.48 
312000 60 0.02 0.50 5.10 
449280 72 0.02 0.50 5.11 
611 520 84 0.02 0.50 5.13 
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FIG. 10. Variation of the work of indentation Was a function of size. The 
data shown correspond to indentation of a Lennard-Jones-spline materi­
al with a yield stress 0.0211 and maximum indentor velocities 1.0(E/m) 112, 

O.S(dm) 112, 0.2S(dm) 112, and 0.125(dm) tl2, where E is the Lennard­
Jones well depth. The data shown at the top correspond to coarser meshes 
with half the workpiece described by 26 X 30, 39 X 45, 52 X 60, 78 X 90, 
and I04X 120 Lagrangian zones of side length d, The data shown at the 
bottom include up to 296 595 mesh points; see table II for selected results. 

suggest an overall uncertainty in the extrapolated continu­
um limit of order 5%. Our results are consistent with a 
correspond~nce between the continuum and atomistic sim­
ulations with a two-dimensional effective yield strain of 
order 0.03 to 0.04. The results for the amorphous and crys­
talline workpieces are not significantly different in this 
regard. 
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FIG, 11. Snapshot from a hybrid simulation with 16 atoms and four La­
grangian zones, The impulses due to the atoms are applied to the boundar­
ies of the continuum zones. The perpendicular interaction of the atoms is 
governed by "image atoms," shown dashed. 

IV. COMBINED APPROACHES 
As an extension of this work, we are exploring hybrid nu­
merical methods combining the atomistic and continuum 
approaches to large-scale massively parallel simulation. 
Just as in Lagrangian continuum mechanics, we consider 
describing a deforming material with an initial checker­
board arrangement of zones. However, some zones are 
atomistic, with internal motions characterized by an atom­
istic time scale, and some are continuous, characterized by 
a sound traversal time. The boundaries between such con­
tiguous regions are characterized as reflecting on the atom­
istic side, with a mass chosen to match the acoustic imped­
ance of the neighboring continuum material. The atomistic 
impulse transmitted to each boundary between continuum 
time steps is reflected in the displacements governing the 
development of the continuum stress tensor; see Fig. 11. 
Within the atomistic zones, and near the continuum 
boundary, the mean atomistic velocities parallel to that 



boundary are controlled with a Nose-Hoover thermostat, phous periodic module provided by Frederick O. Wooten. 
so as to impose a no-slip condition. In the direction perpen­ The cover illustrates two of the amorphous 32 768-atom 
dicular to the continuum boundary, the nearby atoms in­ indentations, one with a smooth-faced tetrahedral inden­
teract with image atoms in order to provide a realistic sur­ tor, the other with a rough face-centered-cubic atomistic 
ace energy. indentor. The cover illustrations were created with ray­

V.SUMMARY 
Massively parallel computers, typified by SPRINT, make 
possible routine simulations of deformation problems 
characterized by millions ofdegrees offreedom. In the case 
of plastic flow, such simulations indicate relatively rapid 
convergence of the microscopic systems' flow properties to 
the macroscopic limit, at least in the absence of stress sin­
gularities. The results for crystalline and amorphous solids 
are roughly similar. Comparison with the continuum simu­
lations implies a rough two-dimensional plastic yield strain 
about 0.04. Continuum simulations require relatively so­
phisticated flow models to match the details of the atomis­
tic results, such as the shape of the indentation cavity. 
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