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NONEQUILIBRIUM MOLECULAR DYNAMICS AT LIVERMORE AND Los ALAMOS 

William G. Hoover 

Department of Applied Science 
University of California at Davis/ Livermore 
Livermore, California 94550, USA 

Abstract: The early development, overall accomplishments, and near-term 

future of nonequilibrium molecular dynamics are described. The perspective 
here is personal and emphasizes developments in the western United States. 

From Ann Arbor to Livermore via Durham 

University courses taught by Stuart Rice, George Uhlenbeck, and my thesis 
advisor, Andy De Rocco, led me in the direction of statistical mechanics and 
computer simulation. Andy emphasized that the basis of statistical mechanics 
lies in the simple ideal-gas thermometer. I found that the basis of computer 

simulation was likewise relatively simple. At the University of Michigan 
FORTRAN was covered in a single three-hour evening lecture. 

After graduate school and an interesting postdoctoral year, 1961-1962, with 

Jacques Poirier at Duke University, the attractions of working with Bill Wood, at 
Los Alamos, or with Berni Alder, at Livermore, balanced. I was impressed by 
Berni and Tom Wainwright's pictures of molecular trajectories in the October 

1959 Scientific American and had likewise very much enjoyed my interview 
visit with Bill Wood at Los Alamos. But the "Rad Lab" offered more money, 
$1100/month, versus Los Alamos' $900, and the extra money made up my mind. 
I have never regretted coming to Livermore. One of the many benefits of that 
choice is the opportunity to help celebrate Berni's 65th birthday here in Sardinia. 

Starting out at Livermore with Berni's specialty, hard spheres, I spent the next 
ten years studying equilibrium properties, primarily the mechanical and thermal 

equations of state and the melting transition for a variety of "simple" systems. 
During this period free energy and phase diagramsl were my goals. 
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The Beginning of Nonequilibrium Molecular Dynamics2 

Despite considerable effort, 1967 was too early for nonequilibrium molecular 
dynamics3. Urged on by Russ Duff, I had tried to simulate strong shockwaves on 

the Livermore computers3. But the magnetic tapes used to store atomic 
coordinates for analysis were unreliable. About one tape in seven was 
unreadable. In 1967 Nonequilibrium Molecular Dynamics was not yet feasible. 

By 1972 times had changed. For me, hard-sphere pressure studies and 
smooth-potential equilibrium studies were basically dead. A small army of 
workers4 had developed an equilibrium perturbation theory so good that further 

equation-of-state work seemed uninteresting. The time was ripe for the 
challenge of nonequilibrium work and all the needed ingredients were at hand. 

By now we had learned to generate coordinates as they were needed rather than 
trying to store them for future analysis. Years before, VineyardS and Rahman6 

had shown how to treat the motion of atoms interacting with continuous 

potentials. Rahman had even simulated an 864-atom Lennard-Jones fluid. 

In 1972 I wanted to use fast computers to simulate nonequilibrium systems, 
and with continuous, rather than impulsive, potentials. A halftime teaching 

appointment in Edward Teller's Graduate Department of Applied Science made 
this possible. My flrst doctoral student, Bill Ashurst, shared my enthusiasm for 
nonequilibrium simulation. Bill had the necessary hundreds of hours of 
computer time available at the Sandia Livermore Laboratory. He began to 

develop nonequilibrium molecular dynamics in March of 1972 by seeking to 
match laboratory methods of measuring viscosity and heat conductivity. His 

work was certainly timely. Though we did not know it then, analogous 

independent work was being carried out in England by Lees and Edwards7, as 
well as by Gosling, McDonald, and SingerS. In France, Levesque, Verlet, and 

Kiirkijarvi9 were pursuing Green and Kubo's more prosaic, and less physical, 

equilibrium-fluctuation approach to transport. 

Basic Thermodynamic Concepts 

The conceptual basis of the new nonequilibrium simulation methods is 
straightforward2,10. Mass, momentum, and energy are first divided up among 

the individual interacting particles, with each particle getting its share. Dividing 

up mass, momentum, and kinetic energy is unambiguous. Potential energy is 
more complicated. In the simplest treatment of the simplest case, pairwise­
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additive forces, the potential energy of each pair is divided equally between the 
interacting particles. From this division of the basic conserved quantities the 
local values of mass, momentum, and energy can then be used to construct the 

fluxes: particle current, pressure tensor, and heat flux vector, respectively. These 
definitions, together with that of the temperature (local kinetic energy) are all 
purely mechanical, and so can be taken over unchanged from earlier equilibrium 
work. It is fortunate that neither Bill nor I had been infected by the strange and 
largely unproductive idea that temperature is most naturally defined in terms of 
entropy. Away from equilibrium, despite many attempts, entropy still has no 

useful definition, so that this path leads nowhere. 

Walls and Thermostats 

The Second Law of Thermodynamics implies that any steady nonequilibdum 
flow must necessarily include an energy source, and must also reject heat to its 
surroundings. Thus steady nonequilibrium flows must have heat sinks. The 
main computational problem is inventing appropriate boundary conditions 
governing those degrees of freedom which exchange heat and work between the 
system and its surroundings. We began with what appeared to us to be the 

simplest nonequilibrium problem, a fluid undergoing simple shear between two 

moving isothermal walls. Inventing a sufficiently smooth interaction between 

bulk particles and the walls was challenging. Figure 1 shows four of the many 
wall types we tried out. Bill evaluated various types of rigid walls: first, flat 
surfaces; then, orderly rigid rows of fixed particles; finally, a wall potential based 

on the liquid-phase pair distribution function. In every one of these cases we 

were dissatisfied by the resulting spatial ordering of adjacent particles. Bill 
invented fluid walls in June of 1972. These were fine. Within each fluid wall a 
relatively small number of particles, with constrained mean velocity and 

temperature, was confmed by two reflecting boundaries. 

Figure 1. Rigid flat walls, rigid corrugated walls, fluid walls, homogeneous shear. 
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Figure 2. Temperature (left) and density (right) profiles in shear flow simulation. 

37,.s00 bulk atoms are driven by the steady motion of 5610 boundary atoms. 

The confined wall particles could interact across these reflecting boundaries 
with nearby bulk Newtonian particles. The generalization from shear flow to 
heat flow was easy. The two fluid walls, now stationary, were maintained at 

different temperatures. In all of these cases the velocity and temperature 
constraints were implemented by small velocity adjustments at the end of each 

time step. 

The resulting thermos tatted boundaries made it possible to simulate steady­

state flows of momentum and energy in nonequilibrium liquids. Typically a few 
hundred bulk atoms were confined between two fluid-wall boundaries which 
served as heat and momentum reservoirsll. Just this year [1991] Liem, Brown, 
and Clarke12 have carried out a set of wall-boundary simulations. They chose to 

follow VineyardS by using solid, rather than fluid, walls. They applied this 

technique to shear flows with 37,500 bulk atoms driven by reservoirs containing 

5610 boundary atoms constrained in planes by Hooke's-Law springs. The density 

and temperature profiles from their calculation are shown in Figure 2. Note the 
relatively long-ranged ordering effect of the solid walls on the fluid density. 

Comparison with Green-Kubo Transport Coefficients 

Shortly after we had perfected the measurement of shear viscosity and heat 

conductivity we got the news of Verlet, Levesque, and Kiirkijarvi's 
determination of the triple-point transport coefficients from a relatively-long 40­

hour equilibrium fluctuation simulation9. These French Green-Kubo liquid 

results were in terrible agreement with experimental data for liquid argon. First, 
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the shear viscosity was much too high, for reasons which have never been 

explained13. Further, the ""Tong drawing v:ras used in showing the shape of the 
pressure autocorrelation function used to calculate the bulk viscosity. Finally, a 

factor of two had been left out of the published thermal conductivity result. All 

told, these Green-Kubo results reinforced scepticism. On the other hand, our 
own shear viscosity and thermal conductivity calculations agreed nicely with 
experiment. Thus the three difficulties with the first Green-Kubo transport 

results strongly suggested, quite erroneously and, perhaps unfortunately, that the 
nonequilibrium and equilibrium methods might not agree. 

Homogeneous Periodic Flows 

Along with Lees and Edwards7, and later Evans14, we too had studied 

periodic homogeneous shear flows. The main goal underlying such 
homogeneous periodic methods was to reduce the considerable size-dependence 

stemming from the wall regions. See again Figure 2. A few years later we 

generalized our homogeneous shear method to the simulation of bulk viscosity. 
Our technique15 for bulk deformation resulted in the same motion equations 

Andersen16 was then developing independently for isobaric simulations. 

Heat flow was more difficult to treat. We were unable to fmd a homogeneous 
and periodic algorithm for thermal conductivity. Mike Gillan17 and Denis 
Evans18 solved this mystery independently, discovering a direct technique, based 

on the Green-Kubo fluctuation formula, for measuring the thermal conductivity 

as the response to an artificial external field. All of these simultaneous and 
independent discoveries of the same numerical techniques showed that the time 

was ripe for nonequilibrium simulations. 

Equations of Motion 

Orwell's 1984 was a revolutionary and seminal year for both the style and the 
scope of atomistic simulation. Car and Parrinello were inventing new and 

fundamental equations of motion including the electronic degrees of freedom in 

fully dynamical simulations19. Farid Abraham20 extended the size record for 
simulation, publishing a study of a Q!g system, 161,604 atoms. In Canada Shuichi 

Nose used integral feedback to exert frictional control on temperature in a novel 

way exactly consistent with Gibbs' statistical mechanics21 . 
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A dozen years earlier, when Bill Ashurst had been working on his 

dissertation, we had mainly been concerned with difference equations, and had 

not expressed our "ad hoc" boundary thermostat forces in terms of ordinary 

differential equations. It was not until 1982 that we2.2, and apparently 

independently Evans23, in 1983, expressed these thermostat forces in terms of 

time-reversible friction coefficients. For me, the so-called "Nose-Hoover" 

formulation of these thermostat forces took shape in Paris in 1984, just before my 

stimulating visit with Philippe Choquard in Lausanne. Bad weather had 
changed my plane's landing site from Orly to De Gaulle. Soon afterward, I found 

myself riding a bus, and later, waiting for a train, with a lone co-passenger, a 

Japanese with the inscription "NOSE" on his suitcase. This was a real 

coincidence. Both of us were in Paris two days early for one of Carl Moser's 

CECAM workshops. When my inquiries showed that "Nose" was indeed 

"Nose", we arranged for a productive and pleasant four hours spent on a bench 

in front of Notre Dame, sorting out the fine points of Nose's 1984 papers. The 

reversible friction forces we were discussing in Paris had a form suggested by 

control theory: 

P=F ~p. 

The friction coefficient ~ can be chosen to impose the desired temperature 

relative to a specified stream velocity by using either differential ("Gauss") or 

integral ("Nose-Hoover") controL Differential control can provide a canonical 

distribution in coordinate space22 along with an isokinetic distribution in 

momentum space. Nose proved21 that integral control can reproduce Gibbs' 

canonical distribution in the full phase space. Either differential control-­

equivalent to resetting the velocities at each time step--or integral control, can be 
used to specify the friction coefficient ~: 

<P, K, and T are respectively potential energy, comoving kinetic energy, and 

temperature, while 't is an arbitrary reservoir relaxation time. 

We will see that these same friction coefficients ~ are direct measures of the 

dimensionality loss associated with nonequilibrium phase-space flows. For 

example, in a dense-fluid nonequilibrium shear flow with strain rate £, the loss 

of phase-space dimensionality, relative to the total dimensionality D, is 

AD/D "" (cre/c)2 "" CJv, 
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where a is the collision diameter, c is the sound velocity, and v is the collision 

frequency. For a heat flow driven by a temperature gradient VT the result is 

similar: 

LlO/O "" (aVT IT)2 '" 'Cjv. 

In a strong shockwave, where both velocity and temperature change on an 

atomic scale, the relative dimensionality loss LlO10 approaches unity. In the 

more typical gentle macroscopic flows, where the two characteristic lengths c/E 
and T IVT exceed the atomic scale by perhaps ten orders of magnitude, the 

corresponding loss of phase-space dimensionality is entirely negligible . 

Finite-Difference Forms for the Equations of Motion 

The simplest form of the simplest algorithm for solving the equations of 

motion, Stormer's, as used by Verlet9 and many others, is: 

.; = (F1m) => (rt+dt - 2rt + rt-dt)1dt2 E (Ft/m) . 

This patently time-reversible algorithm describes isolated systems with constant 

volume and energy. This same algorithm can be generalized to equilibrium 

simulations based on known Gibbs' ensembles at constant temperature or 

constant stress or to nonequilibrium simulations24 for which no workable 

ensemble approach yet exists. In the isothermal case, for instance, the Stormer 

analog of the Nose-Hoover equations of motion becomes: 

.; E (F/m) - ~r => (rt+dt - 2rt + rt-dt) I dt2 E (Ft/m) - ~t(rt+dt - rt-dt) I (2dt) ; 

K :: :L(ml 2)i:2 => Kt:: :Lm(rt+dt - rt-dt)2I (&lt2) ; LlKt E Kt - <K> ; 

. 
~ ::L'.Kt/<K>'t2 => (~t+dt- ~t-dt)/(2dt) EL'.Kt/<K>'t2 LlTt/<T>'t2. 

The first of the three difference equations can be solved for the set of new 

coordinates {rt+dt}. These new coordinates appear again in the next equation, 

which provides a centered-difference expression for the kinetic energy Kt at time 

t. The new friction coefficient ~t+dt can then be computed from the kinetic 

energy difference LlKt. 
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Like Verlet's original approach to molecular dynamics this generalization 

shares the same desirable time-reversibility and stability properties. The reason 

for the exceptional stability of the Stormer-Verlet schemes has recently been 

clarified by H. Yoshida2S. He showed that the discrete points (rndt) == (rt) 

generated by the Stormer difference equations lie upon a continuous trajectory 

generated by a perturbed Hamiltonian. This perturbed Hamiltonian is "close to" 
the original one, differing from it by a term of order dt. 

Higher-Order Generalizations of the Stormer Algorithm 

Yoshida also ge:neralized this idea, showing how to generate a family of 

higher-order algorithms which, like Stormer's, preserve phase-space volume. 

Thus the Stormer algorithm, and its more modern generalizations24 to 

nonequilibrium flows, owe their deterministic time-reversible nature to an 

underlying Hamiltonian foundation. At the expense of additional storage and 

reduced stability relative to the Stormer method, another algorithm, simpler, 

and considerably more accurate than Yoshida's scheme, can be derived2. It uses 

coordinates from five successive time steps and forces from three. In the 

microcanonical constant-energy case this higher-order scheme is: 

rt+2dt - rt+dt - rt-dt + rt-2dt == (dt2/4m)[5Ft+dt + 2Ft + 5Ft-dtl . 

Velocities can be estimated from these coordinates and forces. For instance, 

Vt;;: (l/60dt)[7rt+2dt + 16rt+dt - 16rt-dt - 7rt-2dt] - (dt/5m)(Ft+dt Ft-dt)· 

These ideas also apply to Nose-Hoover canonical or isobaric equations of motion. 

From Linearity to Nonlinearity 

Within a few years the new nonequilibrium simulations quickly reproduced 

not just the diffusion coefficients, but also the bulk and shear viscosities, yield 

stresses, and heat conductivities for simple fluids and solids. The accumulated 

fluid results turned out to obey a modern corresponding-states version of 

Enskog's theory, emphasized by Rosenfeld26, in which the excess collisional part 

of the transport can be related to an effective hard-sphere size through the 

(equilibrium) entropy. Because Francis Ree and I had devoted several years of 
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effort to the measurement and interpretation of the entropy for hard spheres27, 

we were pleased to find this application. 

After the linear transport coefficients were under control intrinsically 

nonlinear processes were next to be simulated28. At Los Alamos, Brad Holian 

followed Klimenko and Dremin29 in simulating strong shock waves3,30. At 

Livermore and Davis, we studied plastic flow in solids22. Our molecular and 

mesoscopic simulations followed studies of dislocation dynamics which my son 

and I carried out during my sabbatical leave in Australia, 1977-1978. The 

dislocation and plasticity work was then encouraged and supported by the Army 
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DOLL'S TENSOR APPROACH TO 
ADIABATIC DEFORMATION 

W.O. Hoover & A.J.e. Lad<! 

Figure 3. 1980 IUPAP Edmonton Poster describing "Doll's Tensor" I:qp. This 

approach provides a Hamiltonian description of viscous and plastic deformation. 

Research Office, mainly through the kind efforts of Ed Saibel. Howard Hanley's 

excellent 1982 meeting at Boulder28 also provided a strong stimulus for this 

work, as did several conversations at the otherwise relatively sterile 

meetings of the International Union of Pure and Applied Physics [Edmonton 

(1980) and Edinburgh (1983)]. My attempts to give talks describing my work with 

Tony Ladd on the nonlinear transport of shear momentum at these IUPAP 

meetings failed completely, resulting in the Doll's Tensor and Lorentz' Gas 

poster-session contributions shown in Figures 3 and 4. 
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Figure 4. 1983 IUPAP Edinburgh Poster, drawn by Solveig Shearer, describing 

two-body shear-flow work supported by The Army Research Office's Ed Saibel. 

Nonlinear Flows and Steady-State Information Theory 

Nonlinear flows are more easily treated in small systems than in large 

systems and at low density rather than high. T.he simplest case, the two-body 

low-density problem can be solved exactly by using a special form of Boltzmann's 

gas theory. In such a case molecular dynamics can be avoided entirely. For two 

low-density hard spheres undergoing homogeneous periodic nonequilibrium 

mass or momentum flows the exact one-particle phase-space probability density 

can be expressed as a solution of the Krook-Boltzmann equation31 : 

where t is the time between collisions. 

Solutions of such few-body low-density transport problems deepened my 

understanding of Jaynes' and Shannon's and Zubarev's "information theory". 

That theory seeks the distribution function which maximizes Gibbs' 
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(equilibrium) entropy by minimizing the corresponding phase-space integral 

JJflnfdpdq ;: <lnf> -S/k. It is sometimes claimed that this same theory can be 

applied generally, even far from equilibrium. If it were true then Gibbs' entropy 
would likewise be very useful far from equilibrium. I tested this idea. In the 
low-density, spatially-homogeneous Galton Board case, for fixed density, 

temperature, and current, this variational approach seeks the momentum 

probability density f(p) which maximizes the entropy integral SINk ;: -Jflnfdp. 

For me it was interesting to see that the solution of this problem, the 
information-theory fIT, was very different from the fKB from the (exact) Krook­

Boltzmann equation and the fMD measured in the corresponding direct 
molecular-dynamics simulation31,32. Unlike the latter two exact distributions 

the maximum-entropy information-theory distribution is not a steady solution. 

Unless the current is maintained steady, by forcing not only the average current 

<I>, but also all of its time derivatives, <dI/dt>, <d2I/dt2>, <d3I/dt3>, ... to vanish, 
the current will simply decay to zero. All the time derivatives of the current 
would have to be set equal to zero in order to reproduce the simpler results from 
the Boltzmann equation or from computer simulation. The collective effect of 

these many constraints is responsible for the loss of phase-space dimensionality 
seen in nonequilibrium strange attractors. With this collapse Gibbs' equilibrium 
form for the entropy, -k<lnf> , diverges to minus infinity. Thus information 
theory is not a useful approach far from equilibrium. 

Fractal Attractors from Nonequilibrium Molecular Dynamks2 

The diffusion, viscosity, and heat conductivity coefficients produced by 
nonequilibrium molecular dynamics simulations are roughly consistent with 

predictions based on Enskog's hard-sphere model. But systematic improvements 
of this crude 1926 model are hard to make and present day theory has bogged 

down. This lack of progress is perhaps not surprising in view of the underlying 
chaotic dynamics which generates more information than can be contained in 

any theory. There is no convenient nonequilibrium analog to Gibbs' 
equilibrium distributions. The corresponding nonequilibrium kinetic equations, 
investigated by Yamada and Kawasaki33, Visscher34, as well as Evans, Holian, 
and Morriss35,36, suggested that the phase-space distribution functions diverge 

for nonequilibrium steady states. In 1986, it turned out that the nonequilibrium 
phase-space distribution functions actually divergent. with the probability 

density collapsing onto a fractal strange attractor of reduced dimensionality. 



In a fractal object the number of points neighboring a typical attractor point 

and lying within a distance r varies as rD where D is nonintegral and, in typical 

"multifractal" attractors, also varies from place to place. This fractal nature 

became clear to me when another doctoral student, Bill Moran, generated phase­

space plots for a simple two-body nonequilibrium steady-state system, the Galton 
Board37, which I had investigated earlier with Tony Ladd32. See Figure 5. 
Because later investigations of similar systems38,39 showed that the behavior of 

this simple system is typical, I will discuss simple few-body systems here. 

Figure 5. Galton Board with typical 99-collision chaotic trajectory sequence (left). 
Extraordinary periodic trajectories can be stabilized at special field values (right). 

Fractal Few-Body Systems 

We begin by describing the simplest models which generate phase-space 
fractals. Figures 6 and 7 show two of the corresponding (multifractal) objects, 

those corresponding to nonequilibrium mass currents and shear momentum 

currents. With relatively strong nonequilibrium driving, the corresponding 

phase-space dimensionality loss can typically be on the order of ten percent of the 
total dimensionality. Similar losses characterize the phase-space attractors of 

macroscopic many-body systems too, with the maximum dimensionality loss 

corresponding to the extreme conditions present in a strong shockwave, where 

velocity and temperature and energy all change qualitatively in distances of the 

order of the interatomic spacing. 
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Figure 6, Unit cell for the Galton Board (left) showing the angles 0: and ~ defining 
collisions. Corresponding fractal collision sequence (right) in (o:,sin~) space. 

The Galton Board problem37 can be viewed as a periodic two-body system, or, 

equivalently, by switching to a coordinate system fixed on one of the particles, as 
a one-body scattering problem. In the one-body picture a particle falls, under the 

influence of an accelerating field, through a periodic array of scatterers. The 

kinetic temperature of the falling particle is kept constant by using a frictional 

force -~p, where p is the momentum and ~ varies with time. In the two-body 

problem both bodies are accelerated symmetrically, one "up" (say) and the other 

"down". Two collision sequences, one chaotic and one periodic, are shown in 

the one-body Figure 5. 
The nonequilibrium accelerating field (of strength E) generates curved 

trajectories, rather than straight lines, with the direction of the velocity varying 
with time according to the nonlinear equation: 

9= -(E!p)sin9 . 

Here the angle 9 describes the orientation of the velocity vector relative to the 

field direction. At high density a sequence of collisions can be generated 
numerically at the rate of millions of collisions per hour of computer time. 

Figure 6 shows the distribution of collisions for two hard disks in a moderately 

strong field. The distribution is multifractal, with a singular probability density 

distribution which diverges as the mesh is refined. 



Figure 7. Stereo attractor for the periodic two-body hard-disk shear flow. The 
angles a and ~ are defined as in Figure 6. The third dimension represents time. 

This divergent fractal behavior is not at all special to the Galton Board. An 
analogous problem involves the periodic shear of two disks32,40 as suggested by 
Figure 4. Choose the simple flow Ux == ey. In that case the equation of motion is: 

•a=£sm'. 2 a, 

where agives the direction of the velocity relative to the flow direction, x. 

Because the shape of the system repeats periodically, in a time equal to the 
inverse of the strain rate £, the phase space for the shear flow problem is four­

dimensional rather than three. The distribution of collisions occurs within the 
three-dimensional subspace shown in the stereo Figure 7. Once again the 
distribution is a fractal attractor, diverging as the mesh is reflned. 

Heat flow is still more complicated, requiring three particles, not just two, for 
heat flux without mass flux. In two space dimensions such a flow, with center of 
mass, center-of-mass velocity, kinetic energy, and heat flux vector flxed (seven 
constraints all told), takes place within a flve-dimensional subspace of the 12­
dimensional phase space. Here pairs of collisions occur within a simple four­
dimensional collision subspace analogous to the usual Poincare section. By 

using color and!or animation, energy and momentum of colliding particle pairs 
can also be shown, making it possible to analyze four-or-even-flve-dimensional 
problems geometrically. Unfortunately the constraint forces required to generate 
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the underlying flxed-flux dynamics are relatively intricate, and I have not yet 

been successful in generating even the corresponding four-dimensional fractal 
subspace distributions. The further complexity of flows coupling the mass and 

heat currents, illustrating the Soret and Dufour effects, requires six-dimensional 

phase spaces with five-dimensional Poincare-section analogs. 

Fractal Many-Body Systems 

The fractal nature of the two simple systems illustrated in Figures 6 and 7 is 

typical of all steady or time-periodic nonequilibrium flows, and has interesting 

topological and philosophical consequences. For all such nonequilibrium 

simulations which use Nose-Hoover thermos tatting forces it is possible to 

resolve Loschmidt's paradoxical question: "How can time-reversible equations of 
motion have irreversible solutions?" The nonequilibrium simulations all show 

that a phase-space collapse to a fractal strange attractor occurs with a collapse rate 
given by the summed spectrum of Lyapunov exponents40-42, The Nose-Hoover 

equations of motion establish that the time-reversed motion is conflned to a 
zero-measure unstable repellor (geometrically similar to the attractor, but with 
mirror-image momenta), Thus the time-reversed motion is unobservable on 

two counts. First, its phase-space measure vanishes. Second, flow in the vicinity 

of the repellor is unstable, expanding rather than contracting. 

The time-averaged evolution of steady phase-space flows can be described by 

the flow's Lyapunov exponents. These exponents, one for each dimension in the 
phase space, describe the orthogonal growth (or decay) rates of a comoving phase 

space hypersphere, or "ball", centered on a phase-space trajectory. In 

nonequilibrium steady states any comoving element of occupied phase-space 

volume, such as this ball, which I denote with the symbol <8>, must decrease 
exponentially with time: . 

0(t)/0(0) == exp(L).t) == expCE-<~>t) == exp[-AS(t)/k] == exp[-<S>t/k] . 

The link to the external entropy production AS oc t then follows directly from the 
Nose-Hoover equations of motion, as shown in detail below. It is to be 

emphasized that the older Langevin random-force description of thermostats 

precludes such a quantitative link. 
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The fundamental cause of irreversible behavior, with AS> 0, is the Lyapunov 

instability that forces nearby phase-space solutions to separate exponentially in 
time, as expO ..1t) , where A 1 is the largest of the Lyapunov exponents. Close to 

equilibrium the resulting dissipation is small and quadratic, with S/k varying as 

the square of the deviation from equilibrium, e2 or VT2. The dissipation 

corresponds to phase-space shrinkage to a strange attractor, with a phase-space 

dimensionality loss quadratic in the nonequilibrium gradient. Far from 

equilibrium the dimensionality of the occupied phase space can shrink further 

and approach zero. 

The spectrum of Lyapunov exponents {A.} which describes this exponentially 

diverging instability can then be related to the Nose-Hoover friction coefficients 

{~} and also to the entropy production AS associated with the system's 

interactions with external heat reservoirs. To demonstrate this result it is 

necessary first to show that fluctuations in the friction coefficients {~}, and the 

corresponding temperatures are uncorrelated. This follows easily from the 

Nose-Hoover motion equation for each friction coefficient ~ coupled with the 

observation that the time-averaged value of ~2 has zero time derivative: 

. . 
[~EO [(p2/mkT) -1]/'t2 => <~~> EO 0] => <~p2> =<~>rnkT . 

The lack of correlation between ~ and p2 allows the summed reservoir heat 

exchanges to be expressed in terms of the friction coefficients themselves: 

S/k =<L~p2/mkT> EO <L~> EO - <LA.> ~ 0 . 

This result, that the entropy of the surroundings of any nonequilibrium steady 

or time-periodic state must increase, is surely the most interesting lesson from 

the nonequilibrium simulations. 

The exponential divergence of nearby trajectories always results in the 

bending and folding associated with a phase-space feature called a Smale 

horseshoe41. Repeated bending and folding, required by exponential separation 

within a bounded space, is the microscopic geometric mechanism underlying 

macroscopic irreversibility. It is the intricate information embedded in the phase 

space by this chaotic folding mechanism which overwhelms the information 

content of any theory. Exactly the same folding mechanism, resulting in 
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qualitatively similar [which is to say, relatively featureless] Lyapunov-exponent 

spectra, underlies continuum simulations of hydrodynamic shear flows. 

Nonlinear Nonequilibrium Theory 

A theory for the Lyapunov exponents, fractal dimensionality, and nonlinear 

transport coefficients would be most welcome. So far, despite considerable effort, 

only a few results, directly related to the nonequilibrium thermostats, have been 

derived35. The most interesting of these is this: in steady flows the nonlinear 

transport coefficients follow from the same formula as do the near-equilibrium 

fluctuation-theory coefficients. Let us illustrate this point in the case of an 

isoenergetic field-driven mass flux. Because the nonequilibrium phase-space 

distribution function f must obey the generalized Liouville Theorem, 

where the friction coefficient which stabilizes the internal energy Lcj>ij + L p2/(2m) 

is determined by the field E: 

Px =E + Fx - ~Px i Py =Fy - ~Py; :::} ~ == (EPx/mkT) , 

the exact nonequilibrium current at time t, <px>t can be related to the work done 

between the initial time 0 and time t through the exact chain of relations: 

It is extremely interesting to fmd that the nonlinear current is given by the same 
autocorrelation integral as is found in the Green-Kubo linear perturbation 

theory. The trick to showing this is to write ft, the distribution function at time t, 
as the time integral 0(f5 from time 0 to time t. Unfortunately nonequilibrium 

correlation functions are no more easily generated than nonequilibrium fluxes, 

so that the present "theory", while "exact", appears barren. 

It might be thought that the trajectories associated with thermostatted degrees 

of freedom are completely artificial. It is amusing that the trajectories which 

result from the isokinetic constraint are really not so strange. Exactly the same 

trajectories follow from Hamiltonian mechanics if the coordinate dependence of 

the potential function is taken to be exponential, rather than linear in the 
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coordinate parallel to the field43. Thus the trapped trajectory shown in Figure 5, 
which is, like all periodic orbits, unstable without the accelerating field, is a fully­

stable consequence of ordinary Hamiltonian mechanics in the presence of an 

exponential nonlinear field. 

Unstable periodic orbits in phase space can be used to describe time averages 
on chaotic attractors44,45. Evidently chaotic phase-space orbits must eventually, 
and repeatedly, come arbitrarily dose to their initial conditions. Thus long 
unstable periodic orbits can be used to approximate chaotic orbits. This approach 

can be made systematic by considering periodic orbits of increasing length. Orbits 

of equal duration 't are weighted according to the sum of their positive Lyapunov 
exponents: 

Provided that the equations of motion are time-reversible the forward and time­
reversed orbits can be combined in pairs. The individual time-reversed weights, 

make a smaller contribution, smaller by a factor proportional to the quotient, 
exp(-L.+"'i't)/exp(+L._"'i't) == exp(-L."'j't) == exp(+L.~j't), where the final Lyapunov­
exponent sum includes all the exponents. This approach45 leads to several exact 

nonlinear relations linking the Lyapunov exponents, transport coefficients, and 
the multifractal spectrum f(ex). Vance has recently explored the convergence of 

his new approach for the Galton Board problem45• 

As Taylor's series would suggest, not too far from equilibrium the viscosity 
and conductivity show nonlinear variations which are quadratic in the 
deviation from equilibrium. Unfortunately such quadratic terms can depend 

upon the thermodynamic boundary conditions so that a defmitive 

determination of nonlinear material properties is not easy. It is for instance 

evident that the direction of the heat flux, the orientation of the angular 
momentum, and the time rate of change of temperature can all influence the 
anisotropicity of the normal stresses in a shear flow. Articulating and solving 

the well-posed problems needed to unravel this complexity remains a 
stimulating and challenging task It seems likely that a numerical approach to 

solving the Boltzmann equation, described at this School in Professor Bird's 
lecture, would be helpful, particularly in two-dimensional problems. 
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Nonlinearity and Shock Waves 

A nonlinear problem which is free of these boundary difficulties is a steady 
shock wave. The shock wave boundary conditions are purely equilibrium ones, 
and lead to a strongly nonequilibrium steady state which can be very far from 
equilibrium, with pressure gradients on the order of trillions of atmospheres per 

centimeter, I have enjoyed working on shock wave problems with Brad Holian, 
first at Livermore, and later at Los Alamos, for about 25 years. We were first 
influenced by Russ Duff's enthusiasm3 and Klimenko and Dremin's success in 
simulating fluid shockwaves with molecular dynamics29, The results, for weak 
shocks, were not very different from the predictions of the continuum Navier­

Stokes equations29• Brad improved on the earlier Russian work by carrying out 
careful simulations of much stronger dense-fluid shockwaves30 and found true 
nonlinear increases within the shock wave, about 30%, for both the viscosity and 

the heat conductivity. 

Nonlinearity and Material Frame Indifference 

At Livermore I had read about the so-called "Principle of Material Frame 
Indifference" with considerable scepticism. An idea embodied in the "Principle", 
that rotation would have no essential effect on material properties, seemed to 

me wrong [mine is a widespread, but sometimes controversial, view). I therefore 
carried out simulations of heat flow46 in a rapidly-rotating system in order to 
demonstrate that a truly nonlinear coupling, that linking the heat flux vector 

and the Coriolis force, can violate that "Principle". Although the relatively-large 
two-dimensional fluctuations limited the precision of these results Enskog's 

vintage-1926 theory of nonlinear transport was vindicated. Both the shockwave 

and rotating conduction simulations showed that Chapman and Cowling47 were 
correct in predicting that the Burnett and Super-Burnett coefficients are relatively 
small, even "far from equilibrium". Thus nonequilibrium systems are not hard 

·f 
~ 

to "understand". The simple linear laws of Fick, Newton, and Fourier, are 

generally enough. Investigations designed to find significant exceptions to 
Navier-Stokes hydrodynamics have been largely unproductive. 

Bigger Systems and the Future of Simulation 

Massively-parallel computation is today's scientific revolution. The 
parallelism is achieved by dividing the problem, atomistic, continuum, or 
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hybrid, into contiguous parts, one part for each individual processor. Each 

processor's contents is in turn divided up into a number of spatial zones. 
Million-atom simulations48,49 are revolutionizing atomistic computer 

simulation. Billion-atom simulations should follow soon. 

I have listened to Carl Moser preach this gospel of parallel computers for 

about a decade. Tony De Groot made me a true believer when it took him only a 

few days to convert our CRAY molecular dynamics program for the SPRINT50, a 

transputer-based computer Tony built in 1988 at a cost of $30,000. The oost­

effectiveness of the SPRINT, computation per dollar, exceeds that of the CRAYs 

by a factor of several hundred. Figure 8 shows close-ups of a pair of two­

dimensional million-atom simulations performed on the SPRINT as a prelude 

to our recent more-realistic three-dimensional simulations of indentation and 

cutting. At least in two dimensions, coloring can be used very effectively to 

indicate the orientation of each atom's neighbors. The coloring and generation 

method for amorphous grains were both suggested to us by Brad Holian and 

follow algorithms which he, Art Voter, and Terry Dontje developed at Los 

Alamos. The indentation of a granular crystal, one stage of which is shown at 

the right in Figure 8, can be followed very effectively using color videotape. The 

force law used in these simulations is an embedded-atom potential typical of 

simple metals like nickel and copper. The relatively small size-dependence of 

the two-dimensional work49 suggested that three-dimensional million-atom 

systems are big enough to provide an adequate description of material failure. 

Figure 8. Closeups showing indentation of a perfect crystal Oeft) and a granular 

crystal (right). Granular atoms are shaded to indicate their neighbors' mean 

orientation. Figures 8 and 9 were created with the very welcome help of Mike 

Allison, Tony De Groot, and Carol Hoover, all at LLNL (Livermore). 
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Figure 9. At the left, the longitudinal isothermal compression of an amorphous 
silicon solid at half the melting point. Here the solid is compressed between two 

frictionless plates. At the right, the isothermal indentation of a silicon single 
crystal at half the melting point using an indentor with an equilateral-triangle 
cross section. The indentor (not shown) moves as a rigid body made up of an 

equilateral tetrahedron of atoms. Indentor atoms interact with crystal atoms 

through the repulsive part of the Lennard-Jones pair potential. 

In our very recent three-dimensional work we have concentrated on the 

simple three-body force model of Stillinger and Weber51 for silicon. This brittle 

material has both crystalline and amorphous phases of commercial importance. 

There are recent laboratory-indentation experiments on both and we are carrying 

out parallel simulations. So far we have studied solid-phase plastic deformation 
and indentation flows of 4096-atom amorphous52 and crystalline53 samples of 

silicon, as shown in Figure 9. The basic amorphous structure was provided by 

Fred Wooten. The Figure illustrates relatively-slow isothermal compressions of 

the two sample types at half the melting temperature. 

In preparation for the day when computer-center administrators are forced to 

accept the reality of massively-parallel processing we are presently devoting 
ourselves to the combining of atomistic and continuum mechanics, using 
molecular dynamics in some zones and Lagrangian continuum mechanics in 

others. At present the Car-Parrinello method for the dynamic simulation of 

ground-state quantum mechanics is slow, 400 hours on the CRA Y for a 

picosecond history of 60 carbon atoms. But the thousand-fold cost improvement 

possible with parallelism together with the possibility of hybrid programs 

promises a new horizon, at which Schrodinger's equation, for the electrons, 

underlies thermos tatted nonequilibrium nuclear trajectories. 
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Continuum Mechanics 

In addition to its generalization to other Gibbs' ensembles and to higher­

order algorithms, the same centered-difference Stormer scheme that is so useful 

in molecular simulations can just as easily be applied to continuum simulations. 

In ''Lagrangian'' continuum mechanics the system of interest is divided up into 

zones which obey finite-difference versions of the equations for conservation of 

mass, momentum, and energy: 

dlnp/dt =-V·u; pu =-V'P; pe -V·Q - P:Vu . 

These Lagrangian Equations of Motion can also be solved numerically by 

dividing the mass into quadrilateral (in two space dimensions) or parallelepiped 
(in three dimensions) "zones" and using a two-step generalization of Stormer's 

Algorithm, advancing the coordinates {r} and strains {E} from time t to time t+dt: 

1. Advance the coordinates defining the zone vertices to time t+dt using the 

pressure tensor following from the strain at time t : 

2. Use the time t strain rates {el that result to calculate the time t+dt strains 

(which lead to the pressure tensor and new strain rates): 

It is interesting that the bilinear-displacement triangular zones which are 

ideally suited to problems in continuum elasticity fail miserably for plastic flow 

and have to be replaced by quadrilateral zones54• This is because the number of 

constant-volume constraints and number of degrees of freedom are equal (to 

twice the number of vertices) for triangular zones. The constraints prevent 

convergence of the numerical solution to the physical one(s) as the mesh is 

refined. 

Quadrilateral zones have their own difficulties. If the shear stresses are 

averaged over the zones then the "hourglass" deformation shown in Figure 10 

has no restoring force, leading to "hourglass instability". This instability can be 

avoided by introducing a special "artificial viscosity" to damp the hourglass 

mode of deformation, or by defining local shear strain tensors in the four 
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quadrants of each zone. In the latter approach, which we have followed, an 

additional eight variables per zone are required. These are the two independent 

shear strains for each of the four cell quadrants, (exx-eyy,exY}4' These, together 
with the cell volume make it possible to calculate all the pressure-tensor 

components, the mean pressure P = (I/2)(P +Pyy)' and the independent shear xx
components, (Pxx-PYY'PxY}4' With this approach continuum simulations with as 
many as a million Lagrangian zones are feasible today. 

Figure 10. The "Hourglass" instability to which quadrilateral zones are prone. 

General Remarks for Students 

Scepticism, particuiarly where obsolete ideas are involved, is healthy55. The 

stochastic Langevin approach has recently been superceded by the more-flexible 

time-reversible deterministic methods56 which generalize Nose's approach to 

simulation. Monte Carlo methods have likewise been replaced with 
deterministic dynamical simulations. Dynamic simulations have likewise 

pointed out the shortcomings of approximate approaches based on the idea of a 

nonequilibrium entropy. All these relics of the past are being replaced. 

But novelty is not always desirable. Simulations need to be founded on 
sound quantitative principles which allow for checking, intercomparisons, and 

systematic improvement. Otherwise what poses as "work" is little more than an 

animated cartoon. Those who read and write research papers in physics are 

naturally annoyed when others insist on doing things their own way, just for 

novelty's sake. George Stell invented the apocryphal journal Setbacks in Physics, 
restricted to erroneous work on problems which had already been solved 

correctly by others. All the veterans here could cite many papers which could fit 
such a journal. 
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We found a different example of excessive novelty in an otherwise excellent 

Computer Science Department in Japan. The doctoral students were required to 

publish five papers in the course of their graduate studies. There the resulting 

required novelty was often infinitesimal. But novelty can be good and should 

not be routinely discouraged. Had I heeded the sometimes discouraging words of 

the grand old men of computer simulation, the idols of my University days, both 

the equilibrium free-energy methods which Francis Ree and I developed and the 

nonequilibrium friction-coefficient methods which have kept me occupied since 

about 1980 would have had to have been discovered and explored by someone 

else. Had I substituted the judgment of some laboratory administrators for my 

own, many of the most interesting problems which we have worked out over 

the past 30 years would still be unsolved. Even the judgment of the editors of 

our best journals can at times veer off course57• The most interesting and 

stimulating work, because it overlaps boundaries and does not follow a well­

worn path, is typically the most difficult to publish. But it does have lasting 

value and will eventually prevail. This meeting, at which a wide variety of 

techniques has been skillfully displayed, marks an extremely useful step toward 

the massively-parallel hybrid methods which, through an articulation of 

significant problems, wi1llead us to a more basic understanding of fluid 

turbulence, solid plasticity, and other such delights. 
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