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ABSTRACf: Parallel computers and fast work stations are helping to reveal ever-more-detailed, 
even unexpected, aspects of microscopic chaos and macroscopic instability in atomistic and conti­
nuum flows. Reproducing the chaos and the instabilities tests the integrators and the novel bound­
aries required by nonequilibrium simulations. Here, by adding appropriate boundary, constraint, and 
driving forces to the atomistic interparticle forces, we have simulated a wide range of homogeneous 
ergostatted two-dimensional shear flows with up to 264 196 particles. Our results demonstrate 
hydrodynamic stability, as well as freedom from long-time-tail divergence and turbulence, for Rey­
nolds numbers as high as 50 000. TIlls unexpected stability, despite large-scale fluctuations and mic­
roscopic chaos, makes it possible to define a two- or three-dimensional nonequilibrium "hydrodyna­
mic limit" for shear flows analogous to the equilibrium "thennodynamic limit". 

I. iNTRODUCTION 

Parallel computers have made simulations with millions [1], or even billions [2], 
of degrees of freedom possible. In problems with rapidly-changing connectivity (auto­
mobile collisions are a good example [3]) the dynamic distribution of nodes among 
processors is a challenge. In the simpler problems of confmed hydrodynamic flows, 
treated with particle methods, the distribution of the atoms, or the computational nod­
es, among celis, and the further distribution of these cells among processors, can be 
handled efficiently by describing the developing connectivity with "linked lists" [4] 
of cell occupants, with cells chosen large enough that only particles in neighboring 
cells can interact. 

Simulations have recently become sufficiently detailed to characterize the general 
features of turbulent flows. Numerical simulations of macroscopic turbulence show 
that deviations from the predictions of Kolmogorov's simple dimensional analysis of 
the turbulent energy cascade [2], though real, are small. Frisch and Orszag [5] attribute 
the discrepancies to intermittent fractal structures in the turbulent flows. Because con­
stitutive relations must be assumed from the beginning in the macroscopic continuum 
approach, microscopic atomistic flow simulations can provide more fundamental 
knowledge than can the macroscopic ones. Microscopic simulations generate the con­
stitutive relations.­



71 Large-System Hydrodynamic Limit 

Mathematicians use the tenn "flow" to describe the time-dependent solution of 
differential detenninistic equations of motion, either in a microscopic phase space, or 
in a macroscopic solution space. Quite generally, interesting hydrodynamic flows cor­
res(X>nd to mathematical phase- or solution-space flows which are Lyapunov unstable. 
This means exponential growth, in. time, of the separation of representative (X>ints 
tracing out neighboring trajectories. either in microscopic phase space or in macro­
scopic state space. Interesting hydrodynamic flows are typically dissipative. as well 
as Lyapunov unstable. 

In geometric tenns dissipation corresponds to state-space contraction~ Imagine the 
time-development of all the trajectories initiated at a very large, but finite, set of simi­
lar initial conditions, with those initial points unifonnly filling a phase-space or solu­
tion-space hypersphere. The governing flow equations are said to be "dissipative" if 
the time-dependent hypervolume spanned by the moving representative (X>ints con­
tracts. In the atomistic case, the flow occurs in phase space, and the contraction ref­
lects the extraction of heat from the system. Both microscopic and macroscopic dis­
sipative flows contract and collapse onto a phase-space or state-space strange attractor 
with a dimension less than that of the embedding space. 

Equilibrium microscopic flows follow Liouville's Theorem and do not collapse, 
but are nevertheless Lyapunov unstable. The spectrum of the time-averaged growth 
and decay rates of hypervolumes in state space or phase space is tenned the Lyapunov 
spectrum. The largest Lyapunov exponent, 1...1' describes the rate at which two neigh­
boring trajectories separate 0<.: exp[A.1fl. In a bounded space, the ex(X>nentially-growing 
separation between neighboring trajectories must eventually stop. Eventually the sepa­
ration between bounded trajectories requires a nonlinear description which corres(X>nds 
to bending and folding motions seen in mixing cream with coffee or in kneading 
bread. The simplest mathematical caricature of such a folded structure is the "Smale 
Horseshoe" illustrated in the center of Figure 1. 

The details of the infinitesimally-small-scale linear defonnation. well below the 
finite scale associated with bending and folding, are described by the L yapunov spec­

. trum {A.j }. The sum of the first two exponents gives the rate at which the area defined 
by fhree nearby trajectories, grows, ex: exp[A.1f + ~f], and so on. For stationary dissi­
pative systems. the sum of all the exponents, LA. j , is universally negative. The sum 
gives the rate at which comoving phase volume collapses toward a dissipative strange 
attractor: 

din Vphase 
df == LA.j . 

For microscopic atomistic systems this collapse is the manifestation of the macro­
scopic Second Law of Thermodynamics [6. 7]. 
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LYAPUNOV SMALE POINCARE 
Fig. 1. The initial exponential growth of phase-space hypervolumes, shown to the left of center, leads next to the fonnation of Smale horseshoes, 
and finally to collapse, onto a multi fractal strange attractor. A typical "Poincare" attractor cross-section is shown at the right. 
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Away from equilibrium, the exponential stretching. bending. and collapse are ac­
companied by a reduction in dimensionality of the phase-space distribution. The colla­
pse eventually settles on a fractal object of the kind shown at the right in Figure 1. 
The spectra of Lyapunov exponents can also be obtained for continuum systems, and 
are likewise characterized by multifractal strange attractors in the corresponding mac­
roscopic state space [8]. The importance of the fractal nature of the attractors is two­
fold. First" the dimensionality indicates the number of independent variables required 
for a detailed description of the nonequilibrium state. Second, and more speculatively, 
it seems likely that the relative probability of coexisting solution-space attractors, can 
be estimated by comparing the fractal dimensions of their hypelVolumes, with the hi­
gher-dimensional objects being more probable than their lower-dimensional competitors. 

The atomistic approach is limited to small time and space scales, microseconds 
and micrometers. How can we improve upon the limited efficiency of direct atomistic 
simulation? For gases, we can eliminate the need to treat the detailed particle-particle 
interactions. except statistically. by using Bird's stochastic method for solving the 
Boltzmann Equation. This gas-phase approach makes it possible to study far-frum-equi­

librium flows and instabilities with 10 to 100 times better resolution than molecular 
dynamics can achieve [9]. For condensed phases. we can increase the scale with macro­
scopic particles, rather than atoms, using smoothed-particle applied mechanics [10] to 

provide expanded time and space scales, as well as immunity from mesh-tangling. See 
Figure 2 for an illustration of Rayleigh-Benard instability, a typical unstable hydrody­
namic flow. Each of the smoothed particles shown in the Figure represents a localized, 
but smoothed out distribution of mass, with the mass distributed according to a smo­
othing or weighting function w(r). With astronomically large masses and weighting­
function ranges, this same particle method, "Smoothed-Particle Applied Mechanics". 
can even be applied to extraterrestrial astrophysical events, as in the.successful recent 
modeling of the collisions of Shoemaker-Levy 9 comet fragments with Jupiter [11]. 

In a very special case. the smoothed-particle method displays an interesting iso­

morphism with pairwise-additive-force molecular dynamiCS. with the smoothed-particle 
trajectories identical to atomistic particle trajectories [12]. In this special case the smo­
othed-particle weighting function w(r) must be chosen to have the same shape as does 

the atomistic pair potential $(r). "Hybrid methods" combining the weighting-function 
and potential-based approaches should make it possible to bridge the gap in spatial 
resolution which now separates microscopic and macroscopic simulations. 

The rapidly-increasing speed and scale of fast computers has spawned new tech­
niques and capabilities. These consequences of engineering advances can reverse the 
usual pattern of searching for techniques to solve particular problems. One can 
equally-well search for problems suited to the new techniques. Which of the many 
problems open to investigation are worth solving? Three answers to this question were 
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discussed at a stimulating Symposium on Computer Simulation at R~ros, for which 
this manuscript was prepared: 
(i) the coupling between heat and mass flows was studied by observing the concen­

tration gradient developing -in a system confined between two walls of unlike tempe­
rature [13]; 
(ii) the fluid-solid coexistence curve has been mapped out for the entire family of 

inverse power potentials, $(') oc ,-n, by varying the interparticle force law as the com­
puter simulation proceeds. [14] 
(iii) by using molecular dynamics to study the short-time diffusion of a slab of tagged 

particles the failure of the Maxwell-Cataneo approach to nonlinear irreversible ther­
modynamics has been documented [15]. 

Each of these three interesting studies combines old microscopic material models 
with a new type of simulation technique so as to answer interesting, previously unans­
werable, questions. 

An enduring general problem for both macroscopic and microscopic simulations 
is establishing credibility for the chosen numerical algorithms. We believe that the stu­
dy and understanding of instabilities (16]. both microscopic Lyapunov instabilities and 
macroscopic hydrodynamic ones, and analysis of the ability of numerical schemes to 

reproduce these instabilities faithfully. is the key to validating the schemes. In Sections 
II and III we describe simple integration algorithms as well as the special boundary 
conditions adapted to nonequilibrium simulations. In Section IV we describe the theo­
retical reasons for expecting macroscopic instabilities in two-dimensional shear flows. 
In striving to characterize this high-strain-rate instability of two-dimensional shear 
flows. we found instead. to our surprise, stability. We describe the shear-flow simula­

tions and our numerical results in Section V. We point out there that the size-indepen­
dence of the shear viscosity suggests the utility of a nonequilibrium "hydrodynamic 
limit" analogous to the well-known eqUilibrium "thermodynamic limit" of Gibbsian 

statistical mechanics. 

II. EQUILIBRIUM ALGORITHMS FOR MOLECULAR DYNAMICS 

Even for microscopic atomistic systems, equilibrium is the simplest situation, 
with time-reversible and deterministic equations of motion. The simplest approximate 
integration scheme which retains the time-reversible character of fIle underlying diffe­

rential equations is the remarkably-stable StOrmer integrator [17. 18]. 

[qt -dt - 2qt + qt+dt] = a } 

{ dt 2 t • 
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A series expansion of qt dt in powers of dt shows that the local one-step coordinate 
error is of order dl. so that the accuracy of the coordinates {q} generated by this al­
gorithm is locally third-order. Because two integrations with respect to time are 
required, the corresponding global error is second-order in dt In practice this accuracy 
is degraded by Lyapunov instability, so that the local integration error .acts as a "seed" 

with long-time trajectory errors proportional both to the seed and to expP"lt]. 

RAYLEIGH-BENARD PROBLEM 


IMAGE-PARTICLE BOUNDARY CONDITIONS 


OYEON KUM'S SPAM SIMULATION 


Fig. 2 Sample frame of a Smoothed-Particle Applied Mechanics simulation of the Rayleigh-Benard 
instability problem using reflecting boundary conditions. The particles in the boundary strip are ref­
lected images of those inside. The strip width is equal to the range of the smoothing function. The 
convective flow of heat is induced by a hot lower boundary, a cold upper boundary, and a strong 
vertical gravitational field. 

Higher-order accuracy requires not just better integrators, but also more conti­
nuous derivatives of the accelerations. For example, the smooth repulsivE potential, 
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has a discontinuity in the fourth derivative, 4>"". During the time step dt, with a corres­
ponding coordinate displacement \.-tit, when the cubic force field is first entered. the 
averaged force is in error by an amount of order 4>""(vdt) 3, leading to a local one-step 
coordinate error of order (4)''''v3/m)d~. This one-step error is no worse than those ge­
nerated by the classic fourth-order Runge-Kutta integrator, or Milne's locally fifth­
order, globally third-order, implicit scheme [19]: 

{ 
[q t - - (1)[ ] } dt 2q t + q t +d t ] 

dt2 = 12 at-dt+lOat+at+dt . 

In the work we describe here we use the classic fourth-order Runge-Kutta integrator 
because its treatment of velocities and constraints is more easily implemented. 

Isolated systems obey Hamilton's or Schrooinger's time-reversible motion equa­
tions. Away from "eqUilibrium, the simulation of stationary bounded nonequilibrium 
flows requires generalizing these mechanics so as to include special constraint and 
driving forces to play the roles of energy sources and sinks. It still is beneficial, even 
in this case, to continue to use deterministic and time-reversible equations of motion, 
and algorithms, to describe nonequilibrium problems. A new understanding of the link 
between reversible microscopic dynamics and irreversible macroscopic thermodyna­
mics, which has a long history of puzzling physicists despite Boltzmann's H Theorem 
explanation, has come from analyzing the results ofdeterministic time-reversible none­
quilibrium molecular dynamics [17]. The new deterministic approach provides the 
basis for a quantitative analysis, and understanding, of the symmetry breakings (always 
present in time, and often present in space) associated with nonequilibrium flows. 

Deterministic forces, as opposed to stochastic ones, have another advantage in 
analyzing nonequilibrium flows. Determinism makes possible direct quantitative inter­
comparisons of results among different investigators. 

llI. BOUNDARIES, CONSTRAINTS, AND DRIVING FORCES 

Away from eqUilibrium, energy sources and heat sinks must-be provided. In the 
atomistic case, boundary values of stream velocity, energy, temperature, pressure ten­
sor, and heat flux vector, can be fixed or controlled by Lagrange multipliers. The sim­
plest example of such control is the Gaussian thermostat [20], which fixes the kinetic 
temperature of a specified set of degrees of freedom through a time-varying control 
parameter or "friction coefficient" ~: 
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These motion equations satisfy, identically, the kinetic energy constraint: 

Note the time-reversibility of the motion equations for {q, p} as well as the cons­
traint equation for k. In a time-reversed solution p, ~. and k change sign, while q, 
F, and K do not. 

The Runge-Kutta integrators, which integrate first-order differential equations are 
easily applied to constrained systems. Some other integrators, such as StOrmer's, are 
readily generalized to these cases 17. There is no apparent way to adapt or extend 
"symplectic integrators", such as the implicit Runge-Kutta integrator described by 
Janei at the R¢ros meeting [21]. to the nonequilibrium case. This lack suggests a pro­
mising research area. 

In order to describe nonequilibrium interactions between atomistic systems and 
their surroundings, Ashurst [22] invented time-reversible "fluid walls". These ooun­
daries minimize the spatial ordering of flows confined by external double-walled ooun­
dary regions. The total momentum and kinetic energy of the ooundary particles con­
fmed within any fluid-wall region are constrained to specified ooundary values impos­
ing velocity and temperature constraints on the enclosed system. 

In modeling the continuum case, with smoothed particle applied mechanics, 
[often referred to in the literature as "smoothed-particle hydrodynamics", or SPH] it 
is convenient to use related, but distinct, reflecting boundary conditions [23]. See 
Figure 2. Here, any particles within the range of the smoothing function (analogous 
to a pair potential), can interact with external mirror-image particles. The smoothed­
particle equations make it possible to assign boundary velocities and temperatures to 
all the exterior "image particles" which differ from those of the interior particles 
which they image. Tests of all these ideas, and their variations. can be based on the 
ability of the corresponding simulations to reproduce known hydrodynamiC instabilities 
[16]. such as the Kelvin-Helmholtz, Rayleigh-Benard [24], Rayleigh-Taylor, and Richt­
m yer-Meshkov instabilities. The simplest of these is the constant-volume Rayleigh-Be­
nard instability of Figure 2, in which buoyant convection currents are driven by ther­
mal expansion. The rest involve the Wlstable and unbounded deformations of two rela­
tively-moving materials sharing an unstable common boundary. The relative motion 
can be either parallel or perpendicular to the boundary and is initially exponentially 
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unstable. In the Richtmeyer-Meshkov case the acceleration of a heavy material into 
a lighter one is provided by a shockwave, rather than by the gravity which drives 
Rayleigh-Benard and Rayleigh-Taylor instabilities. 

IV. THEORY OF TWO-DIMENSIONAL SHEAR FLOWS 

To take advantage of recent advances in computer power, we chose to investigate 
the long-standing claim that two-dimensional transport coefficients diverge [25, 26]. 
The basis of this divergence must lie in the relative importance of fluctuations, in two 
dimensions. Because these fluctuations are the same order of magnitude as surface ef­
fects. of order N1fl in both cases, it is plausible that the transport coefficients can 
diverge logarithmically with system size, just as does the nns displacement in a two­
dimensional crystal [27]. 

Wainwright, Alder, and Gass [28] summarize the theoretical arguments leading 
to a logarithmic divergence of the Green-Kubo expression for the shear viscosity: 

11 (t~~) =(;)'1-(Pxy(O) p,p , ) ) EQUILffiRIUMdt ' = 

= (4::'~T )< p!) 'T dInt' = (8::'~T )< p!) InN. 
Their calculations for the coefficient of the (lit) decay follow from hydrodynamic esti­
mates of the long-time decay of shear stresses initiated by a small moving fluid volu­
me element, and involve a relatively-complex combination of thermodynamic and tran­
sport properties. One could equally plausibly consider the decay of shear stresses ini­
tiated by plane transverse velocity waves. Because stress is proportional to the velocity 
gradient. the stress-stress correlation would vary as the square of the wave-vector, eli­
minating the 1/t divergence. 

If the hydrodynamic lit decay is accepted, it seems reasonable to choose the 
sound-traversal time, proportional to N1fl, as an upper limit on the integrated stress 
correlations. Thus, for long times, this approach implies a viscosity diverging as Int, 
or equivalently, InN. The possibility of understanding this intriguing paradox, that a 
patently finite ratio of stress to strain rate diverges, by using the increased computer 
power available today, led us to reinvestigate the problem of two-dimensional viscosi­
ties. Our earlier investigations [27, 29) had been inconclusive. 

V. SIMULATION OF TWO-DIMENSIONAL SHEAR FLOWS 

To reduce numerical errors, we use the classic fourth-order Runge-Kutta integra­
tion scheme, applied to the "SHod" equations of motion [30]: 
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~rial into {.t=(~}ty;y=(~ }Px~Fx-tpY-'PX;PY=FY-'PY};
:h drives 

~= -tPXYV;K=E(p2];p V=E(PXPY]-E[XijYij~ijJ'
2K 2m xy m r·· 

'l 

vestigate the kinetic part of the pressure-tensor component P xy includes a sum over all 
{25, 26]. ticles. The potential contribution is a sum over all N(N - 1)12 distinct Ii <j] 
s, in two e pairs. The "momenta" {p} measure velocity relative to the mean flow, <V> = 
Irface ef­ :y). The friction coefficient ~ is chosen so as to maintain the internal energy, 
ients can + $, constant in time. The forces have three continuous derivatives, as discussed 
in a two­

'he "Lees-Edwards" boundary conditions [31 ] (developed also, independently, 
s leading I Ashurst during his thesis work {22] at the Department of Applied Science in 
:osity: nore) are consistent with a spatially-periodic shear. By using shearing periodic 

aries, we completely avoid the need for physical boundaries confining the fluid. 
simple two-particle version of the periodic model see Reference [32]. We mea­
Ie two-dimensional coefficient of shear viscosity 11 directly from the time-aver­
thear stress: 

-(p ) 

11 = 
- t xy . 

lIllic esti­
uid volu­ :e that there is no connection between the potential energy parameter £ and the 

and tran­ strain ratei: ] 

esses ini­ 'ft/e have accumulated usable viscosity data over a relatively large range in N, 

! velocity r:s; 264, 196, covering more than three orders of magnitude. The data are detai­

~ctor, eli- the Tables. In Figure 3 we display these -viscosities for two different strain rates, 
n the range of linear irreversible thermodynamics; and with the estimated stan­

loose the leviations indicated, as a function of frIll, We do not plot the data on a log a­

.ed stress c scale because the expected theoretical slope is much too large to be consistent 

19 as Int, lur viscosity data. In all cases we study the moderately-dense-fluid state with to­

)X, that a !rgy per particle equal to £ and volume per particle equal to 02. 0ur data show 

:xJmputer ;nificant viscosity increase whatsoever for values of N larger than 2048. If, as 

1 viscosi- )ted by Figure 3, the accurate number dependence is proportional to frIll, then 
rgest-system results only deviate from the limiting viscosity by the statistical un­
Ity of the data, about one part in 400. In Figure 4 we show the largest Lyapunov 

,, ent, A. == 1...1' for the same simulations. That Figure suggests too, somewhat max 
strongly than does Figure 3, a size dependence varying as N I

(2.
3. integra­
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Fig. 3. Steady isoenerfetic shear viscosities for N two-dimensional particles interacting with the po­
tential 10<l£[1 - (ria) ]4. The internal energy is equal to NE. Error bars indicate estimated standard 
deviations. The number of particles ranges from 64 (InN =4.16; ~lfl =0.125) to 264,196 
(InN =12.48; ~lfl = 0.(0195). There is no significant change in the viscosity for N ~ 2048. Nume­
rical values of the reduced viscosity coefficient have been plotted for two reduced strain rates where 
the potential parameters E and a, as well as the particle mass m have all been set equal to unity. 

As this work was being completed, Brad Holian kindly sent us a preprint [33] 

drawing similar conclusions, but based on rather different simulations of considerably 
smaller-scale two-dimensional viscous flows. We are not aware of any work establi­
shing the divergence of the viscosity for any two-dimensional fluids. A careful lattice­
gas study [34] of shear viscosity, with a sinusoidal velocity field, does provide good 

agreement with the predictions of mode-coupling theory - that is. the logarithmic 
divergence of viscosity with increasing system size. These simulations are quite 
different from ours. It is not at all clear how to introduce homog~neous shear into a 

lattice gas or into the mode-coupling theory. 
We conclude, for the hydrodynamic state and strain rates studied here, that the 

hydrodynamic-limit shear viscosity is well defmed, in two space dimensions. when a 
global constraint of constant energy is used to stabilize the nonequilibrium hydrodyna­
mic state. Neither N-dependence nor hydrodynamic instabilities are observed, at 
Reynold"s numbers as high as 50000. 
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Fig. 4. Size-dependence of the maximum Lyapunov exponent for shear flows with N two-dimen­
sional particles interacting with the potential 100£[ 1 - (r/o)2]4. The data cover the same simulations 
described in the Tables and in Fig. 3 and the units have been reduced in the same way. 

Table I. Potential energy, shear viscosities, largest Lyapunov exponent, and shear-stress fluctuations 
for square periodic two-dimensional systems of N unit mass particles at unit density. The pair poten­
tial is 100(1 - ,2)4, The steady shear strain rate du/dy for all of these plane Couette flows is 0.10 
and the total energy per particle, E/N == [ell + Kj/N is 1.000 in each case. The mean-squared fluctua­
tion in the shear stress, dp2if, is expected to vary as l/N. The maximum shear for each run is in­
dicated, where unit shear requires 2000 time steps of 0.005 each. 

N ell/N Al 11 <-Px-y> <NMlX)/~ ~ax 

64 0.3052 3.074 1.291 0.129 8.52 40000 
144 0.3042 3.092 1.302 0.130 8.47 18000 
256 0.3039 3.103 1.307 0.131 8.44 11000 
576 0.3036 3.116 1.312 0.131 8.43 6000 

1024 0.3035 3.124 1.312 0.131 8.45 < 6000 
2304 0.3034 3.131 1.319 0.132 8.44 2000 
4096 0.3034 3.134 1.314 0.131 8.43 < -­ 1000 
9216 0.3034 3.141 1.317 0.132 8.32 200 

16384 0.3033 < 3.143 1.318 0.132 8.42 160 
32400 0.3033 3.144 1.319 0.132 8.55 110 
65536 0.3033 - 1.325 0.132 8.49 140 

146689 0.3033 - 1.325 0.132 8.51 50 
·264196 0.3033 - 1.322 0.132 8.61 30 

* This number, 514 x 514, rather than 512 x 512, was used to improve the computational efficiency 
of the simulation. 
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Table II. Potential energy, shear viscosities, largest Lyapunov exponent, and shear-stress fluctuations 
for square periodic two-dimensional systems of N unit mass particles at unit density. The pair poten­
tial is 100(1 - ,2)4. The steady shear strain rate dujdy for all of these plane Couette flows is 0.25 
and the total energy per particle, E/N :: [4> + K]/N is 1.000 in each case. The mean-squared fluctua­
tion in the shear stress, <AP~>. is expected to vary as liN. The maximum shear for each run is 
indicated where unit shear requires 800 time steps of 0.005 each. 

N 4>IN 1..1 11 (-Pxy) (NAPxy2) €max 
64 0.3073 3.069 1.276 0.319 8.65 50000 

144 0.3064 3.088 1.284 0.321 8.61 30000 
256 0.3062 3.099 1.285 0.321 8.58 10000 
576 0.3060 3.111 1.293 0.323 8.57 6200 

1024 0.3059 3.118 1.292 0.323 8.61 4000 
2304 0.3058 3.123 1.295 0.324 8.56 1200 
4096 0.3058 3.126 1.295 0.324 8.52 1000 

16384 0.3058 3.133 1.297 0.324 8.64 530 
65536 0.3058 - 1.296 0.324 8.53 250 

146689 0.3058 - 1.297 0.324 8.52 70 
264196 0.3058 1.299 0.325 8.26 50 

How can these high-Reynolds-number flows be stable? Microscopic Lyapunov 
instability, which would normally seed unstable, exponentially-growing vortical mo­
tions, is here controlled by the ergostat, which promotes exchange and damping of 
mode energies in such a way as to prevent the instability. 

Heat flow can also be stimulated in nonequilibrium simulations, in a variety of 
ways. Control variables can be used to regulate the kinetic temperature, the energy, 
the stress, or the enthalpy, while a driving field maintains a variable, or stationary, 
heat current. It appears that homogeneous heat flow is more difficult to stabilize than 
shear flow. Several authors found that the Evans-Gillan algorithm for heat flow (which 

accelerates particles according to their energy and stress-tensor contributions at con­
stant kinetic temperature) produces spatially-inhomogeneous unstable flows in two di­
mensions, evidently even for arbitrarily small values of the driving field [35-38]. This 
same instability might appear also in three dimensions. There is no published com­

prehensive intercomparison of the many similar distinct approaches to homogeneous 
heat flow. It is an excellent research topic for large-scale computation. 

Because shear flow is successfully stabilized against instability by thermostatting 
relative to the local mean velocity it seemed plausible that heat flow could be similarly 
stabilized, by thermostatting [39]. We have tried many of these approaches ourselves, 
following Evans' work, and have so far always found instabilities similar to those 
which plagued Evans' original algorithm [38J. Using higher-order frictional force, pro­
JX)rtional to p3, reduces, but does not eliminate, the trend to instability [39J. We were 
unable to find a stable homogeneous heat-flow algorithm in two dimensions, and har­
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bor the suspicion that three-dimensional systems can display a similar instability. But 
because. stable or not, this heat flow occurs without a temperature gradient, the con­
ductivity simulations retain an artificial character. 

As we emphasized recently [29], there is numerical evidence that our periodic 
boundary condition is much less intrusive than is a rigid one. It is therefore very de­
sirable that quantitative transport theories be developed to take into account global 
boundary conditions of the type used here. As a consequence of this work. it seems 
apparent that a well-defined hydrodynamic limit for shear flows, analogous to the ther­
modynamic limit for eqUilibrium systems, can be defined as the large-system limit, at 
fixed density, energy, and strain rate, so that the list of state variables needs to be in­
creased by only one in generalizing the concept of "state" away from equilibrium, to 
include shear. Of course there is a nonlinear variation of temperature and stress with 
strain rate too, so that the nonequilibrium constitutive relation is more complicated. 
But the existence of the large-system hydrodynamic limit dominates the influence of 
surface, wavelength, and frequency effects. 

VI. DISCUSSION 

The present work demonstrates once again the power of simulation to provide 
surprises as a consequence of detailed results. The well-behaved nature of two-dimen­
sional shear flows is a fortunate circumstance for simulation. Were the flows not well­
behaved, the use of two-dimensional simulations to describe three-dimensional prob­
lems would be called into question. A potentially interesting area for investigation is 
the comparison of two- and three-dimensional simulations of otherwise identical hyd­
rodynamic instabilities. 

Because gains of at least two orders of magnitude in computer speed can be ex­
pected within the next decade, this is the moment to identify and resolve those non­
equilibrium problems worthy of investigation using the new large-system tools. 
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