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Particle methods can be used in non-equilibrium simulations of both 
microscopic atomistic flows and macroscopic hydrodynamic flows. In the 
microscopic case, many-body systems can be driven away from equilibrium, into 
non-equilibrium states, by adding boundary, constraint, or driving forces to the 
usual atomistic forces: 

mrNEMD :; P:; FA + Fa + Fe + FD • 

The additional forces can act as energy sources and sinks, with which the driven 
system can exchange heat, and through which it can perform mechanical work. 
In adapting similar 'smoothed-particle' methods to macroscopic problems, 
moving boundaries and heat reservoirs can be treated more easily, simply by 
specifying the velocities and temperatures of special boundary particles. The 
smoothed-particle technique suggests a natural form of turbulent eddy viscosity 
which damps the shortest-wavelength hydrodynamic velocity fluctuations. 

Here, 25 years of development of non-equilibrium particle methods are 
highlighted, emphasizing the importance of thermostats and boundary conditions 
to this activity, and iJlustrating microscopic fractal phase-space distributions and 
the simulation of macroscopic hydrodynamic instabilities with recent worked­
out examples. Some remaining puzzles are given which we hope will be solved 
in the near-term future. 

1. Introduction 

In 1976 [1J, Doug Henderson and John Barker asked the question 'What is 
liquid?'. Up to that time, and despite Gibbs' exact theory, the structural and 
thermodynamic properties of dense fluids had seemed mysterious. Neutron and X-ray 
scattering experiments provided only a tantalizing two-body indication of the 
underlying many-body liquid structure. Ad hoc integral equations and cell models 
were providing crude estimates for comparison with the more reliable results of 
computer simulations. In 1976 computers were still so slow that 500 particles 
represented a 'big' system. At the time of Barker and Henderson's 1976 review, 
our understanding of equilibrium properties had just improved, qualitatively. With 
reference-system pair-correlation structures taken from computer simulations, 
thermodynamic perturbation theory made it possible to compute, within a per cent 
or so in favourable cases, equilibrium energies and pressures throughout a perturbed­
system phase diagram. Doug Henderson played an important role in making and 
exploiting this advance. 

Twenty years later our understanding ofliquids is again undergoing rapid change, 
this time in response to increases in computer speed and capacity. Massively parallel 
simulations with millions [2J, or even billions [3J, of degrees of freedom are becoming 
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routine. Trillions lurk just beyond the teraflop horizon [4]. The 1976 goals of 
generating phase diagrams and equilibrium properties for simple potentials can now 
be achieved with a few minutes work on a fast work station. Where is the presentday 
challenge for simulation and for statistical mecliimics? We believe that it lies in 
understanding non-equilibrium systems, particularly those which exhibit macroscopic 
Lyapunov instability. Such dissipative mechanical systems always involve heat and 
work, and usually require the judicious consideration of thermodynamic processes 
together with a description of the boundaries between a system and its sur­
roundings. 

In discussing presentday non-equilibrium algorithms, we recall the goals that 
Zwanzig emphasized in Mexico, as reported in Kinam in 1981 [5]. He pointed to 
the importance of calculation, or simulation, in advancing theory. He also identified 
four major goals: understanding (i) the approach to equilibrium, (ii) non-equilibrium 
steady states, (iii) metastability, and (iv) kinetic equations. With the passage of time, 
our goals today are a little different, though simulation remains the most reliable 
route to new knowledge in non-equilibrium problems. 

As to Zwanzig's first goal, we are today hardly closer than was Boltzmann, a 
century ago, when he proved the H theorem. For most physicists, that is close 
enough; it is not at all clear what would constitute a further advance towards this 
goal. By 1956 Alder and Wainwright had shown, numerically, that the H theorem 
describes the areraged approach to equilibrium [6J, omitting the number-dependent 
fluctuations about the average, which remind us of Poincare's and Liouville's 
theorems. 

Simulation has clarified our understanding of non-equilibrium steady states [7J, 
Zwanzig's second goal, in several ways: we have learned how to achieve these states 
with special constraint and driving forces which caricature the mechanical and 
thermal interactions of a system with its surroundings; we have learned that the 
phase-space distributions associated with these non-equilibrium stationary states are 
typically multifractal; we have also learned that nonlinear deviations from equilibrium 
are rarely very large. Generally speaking, physicists are satisfied with our understand­
ing of goals one and two. 

We widen Zwanzig's third goal, understanding metastability (as in quiescent 
supercooled liquids), to include an understanding and the simulation of dynamic 
instabilities and turbulent flows. It has become recognized that the 'Lyapunov 
instability', with perturbations growing as exp C).t), is pervasive in both micro­
scopic and macroscopic dynamics [7-9]. The ability of numerical methods to 
predict and to reproduce these instabilities promises to be a valuable guide 
to the future development of efficient simulation algorithms. Much remains to be 
done. 

Zwanzig's fourth goal, developing kinetic equations, is gradually falling by the 
wayside, and is becoming replaced by the goal of non-equilibrium algorithmic 
development, as rapid and low-cost simulations replace the complex theoretical 
approaches and structures of the slide rule era. 

In the present review we emphasize W.G.H.'s research interests and recent work, 
mainly as devoted to forging a parallel link between microscopic and macroscopic 
non-equilibrium systems. Our understanding has followed the route suggested by 
Zwanzig's analysis, .from steady states to instabilities, through new microscale 
equations of motion. The present authors have collaborated recently in the smoothed­
particle work. 
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2. Molecular dynamics and smoothed particle applied mechanics 

The two simulation methods we consider here are non-equilibrium molecular 
dynamics (NEMD) [7,9, 10J, augmenting Newton's equations of motion, 

mrNewton =. P L (- 'Vi<Pij) = FA' 

with boundary, constraint, and driving forces, 

mrNEHD =. P FA + Fa + Fe + FD, 

and smoothed-particle applied mechanics (SPAM) [11-14J in which mesoscopic 
continuum particles are smeared out, using a normalized density w(r), so that each 
particle's continuum-based equation of motion involves a weighted average of local 
stresses: 

{rSPAM =. v=. L [(ajp2)i + (ajp2)j]' 'ViWij; Pi =. L wu}; [2rrrw dr == L 
",0 

In both cases, microscopic NEMD and macroscopic SPAM, we will here choose all 
the particle masses {m} equal to unity, for simplicity. 

Both computational methods can be applied to non-equilibrium simulations. 
Newton's, Lagrange's, or Hamilton's microscopic motion equations provide forces 
which depend upon the coordinat6s {q}; these forces are the conventional sources 
and sinks for thermodynamic work. But these mechanical equations of motion do 
not contain sources or sinks of heat, which must be defined in terms of the momenta 
{p} through the ideal-gas temperature scale k T == <p2 jm). Thus non-equilibrium 
molecular dynamics is an extension of classical mechanics which includes the study 
of heat sources and sinks, as described by constraint and driving forces [7, 9, 10]. 

Macroscopic hydrodynamics, in the form of bulk conservation equations for mass, 
momentum, and energy, also needs to be augmented, at least with boundary 
conditions, and perhaps also with energy sources and sinks. The details of the 
hydrodynamic boundary conditions depend upon the solution method, i.e., finite 
differences, finite elements, or smoothed particles. Because the hydrodynamic equations 
typically incorporate constitutive relations which proceed irreversibly towards a 
maximum entropy state, any understanding of flows which include spontaneous 
thermal fluctuations requires an explicit treatment of source terms to offset the 
continual damping provided by viscosity and heat conduction. How should these 
thermal fluctuations be included? We discuss some general aspects of generating and 
interpreting these Lyapunov-unstable fluctuations in sections 3 and 4. Applications 
are described next, in sections 5 and 6. These are followed in section 7 by a list of 
problems well suited to investigation in the near future. In response to an editorial 
req uest we add, as section 8, a brief summary of our view of irreversibility in statistical 
mechanics. 

3. The nature of microscopic irreversible flows from NEMD 

Microscopic irreversible flows must be driven by non-equilibrium equations of 
motion which incorporate the effects of thermostats, or ergostats, which in turn 
exchange energy with the system of interest. Heat exchange can be time-reversible 
(Gauss or Nose-Hoover) or· irreversible (Berendsen or Langevin), as well as 
deterministic or stochastic. We will discuss here only the reversible-deterministic 
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combination, for this choice simplifies the phase-space analysis of non-equilibrium 
systems, and extends the conclusions which can be drawn from these analyses. 

The mechanical basis of Gibbs' equilibrium statistical mechanics is Liouville's 
theorem, which describes theconstant-phase-volume flow of probability density for 
the fluid through phase space which occurs in systems lacking a mechanism for heat 
exchange with their surroundings. Heat exchange makes a fundamental difference: 
with it the comoving phase volume ® can expand or contract in response to 
time-reversible heat transfers. The phase-space probability density f also varies, in 
just such a way that the product, ® f, is constant, following the flow. As a 
consequence, characteristic of steady irreversible flows, and tied closely to their 
Lyapunov-unstable nature, the phase space attractors representing non-equilibrium 
steady states are muitifractai objects. Liouville's theorem for equilibrium systems, 

. din f /dt 0 dIn ® /dt, is generalized, in this case, to read 

din f/dt NEMD := -d in ® /dt I 'T = I )'Local = - I (Q/Dln - I (Q/DOut. 
Qis positive for heat flowing into, and negative for heat flowing out of, the system. 
Here, {i-Local} represent the local comoving corotating rates of expansion and 
contraction (a pair of these 'Lyapunov exponents' for each mechanical degree of 
freedom). Mechanical stability requires that the time-averaged friction-coefficient sum 
<2:: ~r) be positive, and that the time-averaged Lyapunov-exponent sum I I. 
<2:: i'Local) be negative. Otherwise the occupied phase volume ® would grow without 
bound. Individual terms in all of these sums can be positive, zero, or negative. For 
instance, in the flow of heat from a hot boundary to a cold one, the time-averaged 
heat extracted at the cold boundary, «Q)out) <-(Q)!n), is negative. 

The inexorable loss of phase-space volume, required for steady-state stability, 
leads to a fractal phase-space attractor, with (information) dimension strictly less 
than the equilibrium value. The zero-phase-volume attractor, although described by 
time-reversible dynamics, is made up of states which are negligibly improbable at 
equilibrium. When time-reversed, these attractor states make up a repellor which is 
even more unstable and on which the transport coefficients are negative. The 
overwhelming stability of the attractor (I i. < 0), relative both to the equilibrium 
states (L i. := 0) and to the repellor states (2:: i. > 0), is the microscopic mechanical 
analogue~ of the Second Law of Thermodynamics [15]. 

The attractor dimensionality (equal to the repellor dimensionality) can be 
estimated from the Lyapunov spectrum. Sums of {I, 2, 3, ...} Lyapunov exponents 
{i.} measure the growth rates of {t, 2,3, ...}-dimensional objects, so that, for instance, 
the growth rate of an infinitesimal phase-space sphere is given by the sum i' l + )'2 + )'3 

<d In T~D/dt). Thus, by finding the dimensionality for which the growth rate I'). of 
a comoving phase-space hypervolume of reduced dimensionality is exactly zero, it is 
possible to determine the precise (Kaplan-Yorke) dimensionality of the steady-state 
strange attractors which exhibit no volume change with time. Recent work strongly 
suggests that this non-equilibrium loss in dimensionality, I'1D := DEquilibrium DKY is 
extensive [16J, persisting in the large-system 'hydrodynamic limit', and varying as 
the square of the deviation from equilibrium [9]. 

4. The nature of macroscopic irreversible flows 

The evolution equations for a continuum, 

d lnp/dt = '1'v; du/dt (l/p)'1'u; de/dt (I/p)['1v:u '1'QJ, 
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require constitutive relations giving the stress (J and the heat-flux vector Q in terms 
of per, t), vCr, t), and e(r, t). Irreversible macroscopic flows are described by dissipative 
constitutive equations, which typically include plasticity, or Newtonian viscosity, as 
well as Fourier heat conduction. These dissipative processes inexorably diminish 
velocity and temperature differences. The most interesting systems can be driven into 
wild chaotic time variation despite fixed non-equilibrium boundary conditions. For 
fluids, turbulence is the generic example. 

How does macroscopic turbulence differ from microscopic chaos? Turbulence is 
intrinsically a non-equilibrium property while microscopic chaos is much the same 
at, or away from, equilibrium. In fact, numerical techniques which incorporate 
macroscopic fluctuations exhibit Lyapunov spectra for microscopic and macroscopic 
systems which look very much alike [9, 14]. Nevertheless, there certainly is an 
intrinsic qualitative difference between the perpetual conservative motion of a 
Hamiltonian system, or a system constrained and driven by time-reversible thermo­
statting forces, and the damped motion described by the Navier-Stokes equations. 

The Russian literature [17J stresses the need for phenomenological source terms 
in describing hydrodynamic flows with fluctuations. One way these can be modelled 
is by following Nose's thermostat idea [7, 18-20J, providing energy to the system 
with feedback. Energy sinks are often included to stabilize hydrodynamic simulations 
of shockwaves (with 'artificial viscosity'), and to avoid the explicit consideration of 
short wavelength degrees of freedom (with 'eddy viscosity'). Smoothed-particle 
applied mechanics contains natural velocity fluctuations, with two different estimates 
of the velocities at the nodal points; {v}, the velocities at which the points move, and 
the spatially averaged velocities {<v)} characterizing the neighbourhood of each 
moving point. In the absence of damping, smoothed-particle applied mechanics, like 
Newtonian mechanics, is exactly time-reversible. If damping is required, as in driven 
systems, then the difference between the two point velocities provides a natural 
high-frequency short wavelength heat sink: 

V~bAD~ [<v) - VJ/T, 

where T is a phenomenological relaxation time which can be used to control the 
system energy. 

Boundaries are the crucial link between the system of interest and the surroundings 
with which it interacts. In particle methods the effects of boundaries must occur in 
the equations of motion of the particles {f, v, e}. In the smoothed-particle case we 
have used two natural 'ways for treating system boundaries. Sufficiently many 
particles fixed in space can be used, to provide a high-density container region capable 
of repelling approaching particles. It is equally simple to use a mirror boundary 
condition in which approaching particles are reflected (see figures 1 and 2). An 
advantage of the smoothed particle approach is that the velocities and temperatures 
of the reflected boundary particles can be assigned independent of other particles in 
their vicinity, even the mirror-image particles inside the system. 

5. Microscopic examples using NEMD 

The general nature of non-equilibrium steady states was made clear first through 
the study of two simple one-body p[(yblems [10, 21-24]. The field-driven motion of 
a hard disc through a fixed lattice' of similar discs [22, 23J, with the motion 
constrained to occur at fixed kinetic energy, provides a simple model for conductivity. 
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Figure 1. Rayleigh-Benard simulation using 200 fixed smoothed particles, to form horizontal 
and vertical boundaries, along with 576 moving particles in the bulk fluid. Heat is 
transferred from the bottom to the top in the presence of a vertical gravitational field. 

Figure 2. Rayleigh-Ben:ud simulation using 2500 smoothed particles. The boundaries are 
mirrors. The .boun,dary particles (open circles), which have specified velocities and 
temperatures, are reflected images of interior particles (open circles with velocity arrows), 
which obey the bulk equations for momentum and energy transport. 
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The ergodic phase·space mixing of the hard·disc system is a good model for more 
complicated many·body systems, A shearing lattice of hard discs, again with a 
scatterer moving at fixed kinetic energy relative to the mean flow, provides the 
simplest model of viscous flow [10, 24} 

In both hard·disc cases, diffusion and shear, it is possible to carry out detailed .: statistical studies by studying millions [or billions!] of successive collisions. Because :: 
hard-disc collisions are characterized by just two variables, angles giving the location 

., .'.... ., and the direction of motion after each collision, the phase-space distribution function 
!1 
~l can be constructed from the distribution of collision angle pairs {a, {3}. Figure 3 ...... 
0, indicates the development of the fractal nature of that distribution starting from the 
~•. 
~, uniform equilibrium distribution. t: 
[j 
'j Forshear flow an additional periodic strain variable is required. The numerical 

data show that both these simple steady non-equilibrium diffusive and shearing states 
generate multifractal phase.space distributions. These have zero measure, relative to ~! 
the equilibrium measure of the space, showing that despite the time-reversible nature 
of the equations of motion, the non-equilibrium states form a set of zero measure. al 
Application of Liouville's theorem to the equations of motion establishes that the IS 

comoving phase volume approaches zero almost everywhere, and that the probability 
density diverges to infinity, in both of these systems [15, 16]: 

d. 

[<d InJ/dtNEMD == -d In (8) /dt)] > 0 =:> {J =:>+ oc; (8) =:>O}. 

Exactly these same relations hold in a many-body non-equilibrium system. We 
have just completed a study oftwo-dimensional steady shear flows [25, 26} Besides 
showing that the phase-space dimensionality loss is 'extensive', proportional to 

re 
ld Figure 3. Time development of the t;nultifractal phase-space attractor for the diffusive 
s), hard-disc problem, showing the collisions {:t, sin P} for a set of 10 000 hard discs after 

I, 2, 3, 5 and 10 collisions. 
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system size, the data established that the viscosity in two dimensions is well behaved , 
for a fixed value of the strain rate, showing no trace of the large-system divergence 
predicted by mode-coupling and kinetic theories. This unexpected result makes it 
possible to define a hydrodynamic limit, for shear flows, analogous to the equilibrium 
thermodynamic limit. No similar result has been obtained for heat flows. It appears 
that the Evans homogeneous heat-flow algorithm is unstable for large two­
dimensional systems and may well also fail in three dimensions [25]. 

6. Macroscopic analogues of microscopic flows, using SPAM 

SPAM provides an interesting bridge between continuum mechanics and molec­
ular dynamics, for the particles in SPAM can represent any desired quantity 
of material. A semiquantitative simulation of Rayleigh-Benard instability, which 
typically requires many thousands of particles in molecular dynamics simulations 
[27J, can be carried out with only a few hundred particles. See again figure 1 for a 
snapshot of such a flow. 

There is an extremely interesting relationship between the Newtonian equations 
of motion for a dense fluid and the smoothed-particle equations for a particular ideal 
gas [14]. If the two-dimensional monatomic ideal-gas equation of state P = p2/2 is 
chosen, then the smoothed-particle equations, and the trajectories they generate, are 
isomorphic with the equations of molecular dynamics, using the weighting function 
Ir(r) == </>(r) as a potential function: 

':Ideal 

{ I SPAM 


This isomorphism appears both peculiar and paradoxical, because the molecular 
dynamics motion, from </>(r), although conservative and perpetual, must certainly 
exhibit the long-wavelength viscous dissipation and heat conduction associated with 
irreversibility. At the same time, the Eulerian motion, obtained from w(r), following 
the equations of fluid mechanics, containing no explicit dissipation, and, applied to 
an isentropic ideal gas, can exhibit only a Reynolds stress viscosity but no true 
irreve~sibility. 

We sought to understand the isomorphism better by measuring the 'shear 
yiscosity' associated with the smoothed-particle version of a two-dimensional ideal 
gas. We used Lucy's weighting function with a range of 3 and at unit density, 
corresponding to ordinary NEMD with a pair potential: 

w(r) </>(1') (5/9rc)[1 + 1'J[1 - (r/3)J3 for r < J 

The NEMD equations of motion include the strain rate E == dux/dy: 

x = (px/m) + EY; 

Y (prim); py = ~. - (py; ( -EPxy V/2K. 

The shear stress PXY' at strain rates of 0'25,0'50, and 1'00, and with a fixed internal 
energy of E <P + K == N/2, was always approximately 0·03, for systems of from 64 
to 576 particles. The lack of an approximately linear dependence of stress on strain 
rate suggests that the w fluid can provide interesting non-Newtonian flows resembling 
those of a plastic material with yield stress O'OJ 

To put the relatively'tiny magnitude of this rate-independent shear stress in 
context we computed the w solid's shear modulus, for the two-dimensional static 
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triangular lattice. At unit density, this lattice has a slightly lower energy per particle 
than does the square lattice. The lattice sums of ¢(r), including ¢(O) = (5/9n) 
0'17684, are 

I ¢(r) 1-00223; I ¢(r) 1'00293, 
Triangular Square 

showing that the smoothed-particle approach reproduces the mean density with an 
error of less than half a per cent. The two-dimensional shear moduli, G == (Jx/EXY' 

are given by the expressions [28]: 

Pairs Pairs 

and have the numerical values 0-0071 and 0-0052 for the triangular and square lattices, 
respectively. Thus the measured stress, though negligible with respect to the ideal-gas 
bulk modulus, Bs == p(ap/ap)s == 2P == 2E/V 1, is substantially greater than the 
shear modulus_ 

We expect to explore further the constitutive properties of the smoothed-particle 
weighting function, viewed as a pair potential, in order to clarify the usefulness of 
the smoothed-particle approach to the modelling of high-Reynolds-number flows. 
The exact analogy between the smoothed-particle hydrodynamic equations and 
molecular dynamics has another striking aspect: Levesque and Verlet [29J have 
proved that the common leapfrog algorithm can provide bit-perfect time-reversibility 
in equilibrium molecular dynamics. We have shown [14J 
extended to the Euler equations, as might be expected 
isomorphism. 

that their idea 
on the basis 

can 
of this 

be 

7. Problems for the near-term future 

Because the methods discussed here are still relatively new, with some versions 
and variations being invented independently by several workers, a contentious and 
confusing literature has developed, in which both justified and unjustified claims are 
made for one or another of the various approaches. The uncritical acceptance of such 
claims is a calculated risk the beginner should attempt to avoid. With this warning 
in mind, what progress can we expect to see in the next few years? 

Klimontovich [17J has raised an important subject in his text, the analysis of the 
enhanced effect of mesoscopic fluctuations on transport coefficients. Fluctuations 
have been a part of equilibrium statistical mechanics for 50 years, because their decay 
is directly related to linear transport through the Green-Kubo relations. But it is 
only recently that non-equilibrium fluctuations (turbulence) have been tractable for 
quantitative numerical studies in three space dimensions. 

It seems to us highly likely that both the rumoured logarithmic divergence of 
two-dimensional transport coefficients and the order-unity centre-of-mass contribution 
to the Reynolds number, in two dimensions, are direct consequences of fluctuations. 
It is certainly hopeless to claim to understand three-dimensional turbulence without 

ifirst achieving a firm understanding of fluctuations in two dimensions. 
Klimontovich also attempts to analyse the convergence of microscopic dynamic 

simulations to macroscopic continuum-mechanics. He combines diffusive edt < dx2jDJ 
and sound edt < dx/cJ constraints on the timestep dt with a timestep based on the 
mesoscopic collision rate. Though his results are odd and his estimates seem to be 

"-" 
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unduly pessimistic, it would be profitable to follow up his ideas with the aid of 
accompanying simulations. 

It was suggested long ago [30J that 'long-time tails', of the Green-Kubo 
correlation functions, are related to the difference in the Eulerian and Lagrangian 
forms of the diffusion equation, 

".", 

Here again the two-dimensional fluctuations, in the location of the measurement 
device relative to the fluid being measured, affect the transport coefficients {D}. This 
too requires more study in two dimensions. The special interest of these two­
dimensional problems is enhanced by the relative simplicity of two-dimensional 
computer graphics. 

Extending Liouville's theorem to smoothed-particle applied mechanics, and 
possibly to hybrid models, combining both microscopic NEMD and macroscopic 
SPAM, can provide information over a wide range of dissipative scales, linking 
fluctuation and instability studies together. The result of these investigations will be 
a close coupling between large and small scale phenomena, enriching both types of 
simulation, particularly those seeking a better understanding of fracture and of 
turbulence. 

8. Irreversibility in statistical mechanics 

Before the computer revolution the development of equilibrium statistical mech­
anics was mainly analytic. In this development it was natural to use Hamiltonian 
mechanics and to emphasize 'infinite systems', systems without the boundaries which 
complicate analytic work. In some restricted cases it could even be demonstrated 
that the free energies of N body systems approach a well defined large-system 
'thermodynamic limit' with the free energies proportional to N. The success of Gibbs' 
statistical mechanics has since led many workers to emphasize the study of 
purely-Hamiltonian non-equilibrium systems, again with infinitely many degrees of 
freed9m. 

To us, this approach appears to be a dead end. Real non-equilibrium systems are. 
driven systems, with sources, sinks, and boundaries. As Leb,owitz has repeatedly 
emphasized, it is difficult to improve upon Boltzmann's understanding of irreversibility 
so long as one ignores these features and studies only large isolated Hamiltonian 
systems. On the other hand, the chaotic mixing character of very small systems, as 
evidenced in the figures, together with the development of time-reversible thermostats 
(based on the ideal-gas thermometer), following up Nose's discovery, made it possible 
to generalize Hamiltonian mechanics to include time-reversible deterministic boundary 
forces modelling sources and sinks of thermodynamic work and heat. This generaliza­
tion of classical mechanics has three very real advantages: 

(i) 	 The number of degrees of freedom is reduced; one can study far-from­
equilibrium systems with only a few degrees of freedom. This facilitates 

i' 	 computation, simulation, visualization, analysis, and, as Zwanzig emphasized, 
understanding, 

(ii) 	The visualization, analysis, and understanding of irreversibility is, in particular, 
made much'simpler. The Lyapunov instability of the few-body equations of 
motion, coupled to Nose's time-reversible thermostats, makes it possible to 
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prove that the time development of these flows satisfies the macrOSCOpIC 
Second Law of Thermodynamics. 

(iii) 	The resulting links between microscopic and macroscopic simulations have 
enhanced our understanding of both approaches. 

This new approach to understanding required computers. We believe that it will 
seem as natural to the students of tomorrow as the study of infinite Hamiltonian 
systems was to the students of yesterday. 

One of us (W.G.H.) very much appreciates this opportunity to help honour 
Douglas Henderson, on the occasion of his sixtieth birthday. The work described 
here was supported by (i) the Lawrence Livermore National Laboratory, under the 
auspices of the United States Department of Energy, through Contract W-7405-Eng­
48, (ii) the Academy of Applied Science (Concord, New Hampshire), (iii) the Agency 
for Defense Development, Republic of Korea, and (iv) an Interuniversity Transfer 
Agreement for the support of Oy~on Kum. We specially thank Bill Ashurst, Brad 
Holian, Harald Posch, and the anonymous referee who suggested the material in 
section 8, for useful and constructive comments on many aspects of this work. 
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