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We present a generalization of Benettin's classical algorithm for the calculation of full Lyapunov 
spectra to the case of dynamical systems where the smooth streaming is interrupted by a differen­
tiable map at discrete times. With this formalism we derive the transformation rules for the offset 
vectors in tangent space for a system of hard particles in equilibrium and nonequilibrium steady 
states. In particular, we study the color conductivity of a system of hard disks carrying color charges 
subjected to an external color field. Full Lyapunov spectra are obtained numerically for equilib­
rium systems of 64 and 144 hard disks. Furthermore, the maximum Lyapunov exponent and the 
Kolmogorov-Sinai entropy are studied over a wide range of densities. Both mimic the collision rate 
very well. In the low density regime the maximum Lyapunov exponent is found to follow the relation 
.xl <X -p lnp, as conjectured by Krylov. Full Lyapunov spectra are also reported for nonequilibrium 
steady-state systems of 64 hard disks, which carry color charges and are externally perturbed by an 
applied color field. The simulations cover a wide range of densities and fields. From a careful study 
of small three- and four-particle systems the validity of the conjugate pairing rule is established 
numerically with an error less than 0.1%. Also the number of vanishing Lyapunov exponents due 
to the conserved quantities-center of mass, linear momentum, and kinetic energy-is discussed in 
some detail. 

PACS number(s): 05.45.+b, 02.70.Ns, 05.20.-y, 05.70.Ln 

I. 	MOTIVATION and exhibit C-system behavior, which means that they 
are ergodic and mixing [9-11]. But no attempts at the 
numerical computation of Lyapunov spectra have been 

Since the pioneering work of Alder and Wainwright undertaken up to now. For many-body systems this prop­
[1,2], in which they laid down the foundations of the erty has been explored only for models with smooth inter­
molecular dynamics method, a huge amount of work has action potentials [12]. The reason for this disparity lies in 
been done on systems of elastic hard disks or spheres. the availability of practical and accurate numerical algo­
A wealth of highly interesting phenomena has been dis­ rithms for the calculation of Lyapunov spectra for smooth 
covered in this apparently simple model, one of the most dynamical systems, and the lack of such methods for sys­
fundamental being that the hypothesis of local molecular tems involving hard-core interactions. Nevertheless, due 
chaos is not strictly valid [3]. Stated in more exact terms, to their simple dynamics hard-sphere systems should pro­
the velocity autocorrelation function of the particles does vide new insight into the microsopic processes determin­
not decay exponentially, but follows a power law for long ing the mechanical instability of many-body sytems. 
times, which means that the system loses memory of past In this paper we demonstrate how the classic algorithm 
states very slowly. In spite ofthis, well behaved transport of Benettin et al. [13,14]' already used for the calculation 
coefficients are found in molecular dynamics simulation of of Lyapunov spectra of fluids in equilibrium and nonequi­
nonequilibrium steady-state systems, even in two dimen­ librium steady states with phase space dimension ranging 
sions and in the thermodynamic limit [4]. Since the trans­ from 2 to 400 [15] for the evaluation of full spectra, and 
port coefficients of a many-body system are intimately to 129600 for the maximum exponent [4], can be general­
related to its Lyapunov spectrum [5,6], it seems plausi­ ized to the case of hard elastic interactions. In Sec. II the 
ble that this peculiarity of two-dimensional hard-disk flu­ theoretical background and necessary definitions are pro­
ids should be reflected also in their Lyapunov spectrum. vided. In Sec. III algorithms for the computation of full 
Another property of hard disks and hard spheres, which Lyapunov spectra are derived for a number of models of 
turns out to have a major impact on the Lyapunov in­ increasing complexity which involve hard-disk collisions 
stability of the system, is the solid-fluid phase transition without or with an applied external force. In Sec. IV we 
first discovered by Alder and Wainwright [7,8]. study many-body systems of hard disks in equilibrium 

_ 	 Hard-sphere systems belong to a minority of models for and nonequilibrium steady states and provide a numer­
which rigorous mathematical results exist. It has been ical test for the validity of the conjugate pairing princi­
proved that they are unstable in the sense of Lyapunov ple. We also show that due to subtle properties of the 
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algorithm concerning the conservation of momentum in 
the tangent space dynamics d Lyapunov exponents in a 
d-dimensional space may be negative instead of zero in 
contrast to naive expectation. 

II. LYAPUNOV EXPONENTS 

Typically, the many-body systems mentioned above 
have a strong sensitivity to initial conditions, which 
means that two phase points initially separated by a 
small distance in phase space tend to diverge exponen­
tially. In this case the system is said to be chaotic. To 
state the problem in a more quantitative way, we consider 
a general L-dimensional smooth dynamical system 

(1) 

where r is an L-dimensional vector in the phase space of 
the system. The integration of this coupled set of ordi­
nary differential equations gives the temporal evolution 
of the system, the so-called phase flow, 

(2) 

which will be assumed to be bounded. Let r (t) denote 
the reference trajectory, and r 8 (t) a perturbed trajectory 
connected to r (t) by a parametrized path with param­
eter 8 such that lims-+D r s (t) = r (t). The associated 
tangent vector is defined by 

8r (t) (3) 

Its equation of motion is obtained by linearizing (1), 

(4) 

where D (r) = aFfar is the Jacobi matrix ofthe system. 
To avoid unnecessary notation we will not make the limit 
and the denominator of (3) explicit in the following and 
will refer to hT (t) as an infinitesimal vector separating 
neighboring orbits and describing the temporal evolution 
of an (infinitesimal) perturbation. 

For chaotic systems this perturbation grows exponen­
tially, which motivates the definition of the Lyapunov 
exponents of a trajectory for initial conditions r (0) and 
an initial displacement 8r (0) as 

1 18r(t)1
A(r(0),8r(0)) = -In--·······~ (5)

t 18r(0)1' 

Oseledec's multiplicative ergodic theorem [16] states that 
for ergodic systems under very general assumptions A 
exists and that there are L orthonormal initial vectors 
8r1(0) yielding a set of L. exponents {AI}, which is re­
ferred to as the Lyapunov spectrum of the system. The 
exponents are taken to be ordered, A1 ~ A2 ... ~ AL. 
Since, according to Oseledec, the Al are independent of 
the metric and the initial condition, we can drop the ar­
gument r (0). Geometrically the Lyapunov exponents 
can be interpreted as the mean exponential growth rates 

of the principal axes of an infinitesimal ellipsoid sur­
rounding a phase point and evolving according to (1). 
Thus the Lyapunov spectrum describes the stretching­
and contraction characteristics of the phase flow. 

The Lyapunov exponents of the class of symplectic sys­
tems, to which our hard particles belong if in equilib­
rium, exhibit a Smale-pair symmetry, Al + AL+l-l = 0, 
for I 1, ... , L. This symmetry reduces the numerical 
effort for the calculation of full Lyapunov spectra by a 
factor of 2, and can also be used as a check of the algo­
rithm. Furthermore, for each quantity conserved by the 
equations of motion one Lyapunov exponent vanishes. In 
a d-dimensional equilibrium system of N hard particles 
and phase space dimension L 2dN the total momen­
tum, the total (kinetic) energy, and the center of mass 
coordinates are conserved. Since also one exponent as­
sociated with a displacement in the flow direction equals 
zero, altogether 2d+2 Lyapunov exponents vanish in this 
case. 

Nonequilibrium steady-state systems cease to be sym­
plectic and become dissipative. Nevertheless, the Smale­
pairing symmetry is not totally lost for homogeneous 
systems for which conjugate pairs of exponents add up 
to a constant negative value [17]. The total sum of all 
Lyapunov exponents is negative and corresponds to irre­
versible entropy production [5]. Furthermore, it can be 
shown [18] that the sum of all Lyapunov exponents can 
be related to the respective macroscopic transport coef­
ficients. The number of vanishing exponents due to the 
conserved quantities-center of mass, momentum, and .-;.. 
kinetic energy-in the nonequilibrium case is a more sub­
tle question which will be treated in detail in Sec. IV B. 

The practical computation of Lyapunov spectra ac­
cording to the classic algorithm of Benettin et al. [13] 
proceeds by simultaneously solving the original equations 
of motion (1) for the reference trajectory r (t) and the 
linear variational equations (4) for a complete set of offset 
vectors {8rI}. The difficulties associated with the choice 
of the generally unknown initial vectors 8r l (0) and the 
rounding-error effects of the computer are overcome by 
periodic reorthonormalization of the set of offset vectors, 
such that the Lyapunov exponents are obtained from the 
time averaged logarithms of the respective normalizing 
factors. For a more in-depth treatment of this algorithm 
the reader is referred to [13,14]. 

III. ALGORITHM AND MODELS 

·Whereas the classical method of Benettin et al. can 
be straightforwardly applied to differentiable dynamical 
systems, more refined methods are necessary to treat 
systems, which are, loosely speaking, hybrid models of 
ordinary differential equations and discrete maps. Re­
cently [19,20] we calculated the Lyapunov exponents for 
the Sinai stadium billiard and for the Lorentz gas in equi­
librium and nonequilibrium steady states by adapting the .-..... 
Benettin et al. algorithm to the case of elastic impulsive 
collisions. In this section we reformulate the problem in a 
more general way and derive a scheme for the calculation 
of Lyapunov spectra for such hybrid models. 
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Let us consider the autonomous set of L coupled or­ In the following this discrete event is called a collision, 
dinary differential equations (1) with initial conditions but we stress that our results are valid for all differen­- r (0), and let us assume that, in addition, the transfor­ tiable discrete maps, and not just for elastic impulsive 
mation collisions. 

(6) 

is applied at discrete times {Tl,T2,T3,"'}' The map 
M (r) is assumed to be differentiable with respect to the 
phase space variables. The subscripts i and f denote the 
initial and the final states of the map M. In the time 
intervals Ti+1 - Ti the trajectory is determined by inte­
grating Eq. (1), which yields the smooth flow <f>t. The 
time evolution of the offset vectors is obtained by inte­
grating Eq. (4). Taking into account also the singular 
mapping events at the times {Ti}, the whole time evolu­
tion in phase space and in tangent space can be written 
as 

r (t) <f>t-Tn 0 M 0 <f>r,,-rn- 1 0 ... 0 <f>r2 - T l 

oM 0 <f>T, r (0) , (7) 

or (t) = Lt-Tn·S . LTn- Tn-l ••• LT,-Tl • S· LTI . or (0), 

(8) 

where L is the propagator of or in the smooth segments, 
and S is the map in tangent space corresponding to M. 
The propagator L can be formally written as-

(9) 

where exp+ denotes a time ordered exponential. 
The effect of a single application of the map S on the 

offset vectors is schematically shown in Fig. 1. For sim­
plicity the phase space is taken to be two dimensional. 

p 

q 

In Fig. 1 the reference trajectory is drawn as a solid 
line, whereas the satellite trajectory is represented by 
a broken line. For the reference trajectory the collision 
takes place at the phase point r i and at the time Tc 

and maps the phase space vector r i into the vector r J. 
The satellite trajectory undergoes collision at a displaced 
point r i + ore and at a different time Te + OTe • We 
note that the time delay OTe can be positive as well as 
negative. As can be seen from Fig. 1 the offset vector 
orJ immediately after the collision of both trajectories 
is given by 

where we have taken advantage of the short time approx­
imation 

r (t + ot) = r (t) + F(r) 8t. (11) 

Using the same linearization we obtain 

(12) 

Insertion of this result into (10) and application of the 
linear approximation 

(13) 

finally yields an expression for orJ as a function of the 
phase space vector and the offset vector before the colli­
sion: 

(14) 

or
We note that the time delay OTe is a function of r i and 

i . This equation, obtained from a linear approxima­
tion in time and in phase space, is our point of departure 
for all subsequent calculations. We stress that it the 
exact linear tranformation rules for the offset vectors due 
to a discrete mapping. The ingredients necessary for the 
application of Eq. (14) are the equations of motion given 
by the vector F (r), the map M (r), and its derivative 
8M/8r. As a first example for the application ofEq. (14) 
we rederive the transformation rules for the offset vectors 
of two model systems, which were recently deduced by us 
from purely geometrical considerations [19,20]. Then we 
apply (14) to derive the offset-vector transformation rules 
for a hard-sphere system carrying color charges both in 
equilibrium and in the presence of an external field. 

A. Collision of a two-dimensional point particle 
with a flat surface 

FIG. 1. Effect of the noncontinuous transformation M on The simplest system is given by a two-dimensional 
the offset vectors in the tangent space of the system. point particle of mass m colliding with a flat surface, 
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on which it is elastically reflected. One can find this case 
in two-dimensional billards such as the stadium billiard 
[19]. The phase vector is 

(15) 

where q and P are the position and the momentum vec­
tors of the particle, respectively. Since the particle moves 
force-free between collisions, the equations of motion are 
given by 

(16) 

The particle is elastically reflected, which means that the 
transformation M leaves the position q and the momen­
tum component parallel to the surface unchanged and 
changes the sign of the perpendicular component of the 
momentum: 

(17) 

where n is the unit vector perpendicular to the surface at 
the collision point. The collision of the satellite trajectory 
is delayed with respect to the reference trajectory by 

(Jqi· n ) 
JTc = - (I )' (18)

Pi m·n 

which is simply the satellite-particle separation perpen­
dicular to the surface divided by its normal velocity. For 
the Jacobian matrix associated with the map M we ob­
tain 

8M (1 0 ) (19)8r = 0 (1 - 2n 0 n) , 

where 0, 1, and n 0 n are 2 x 2 submatrices. The notation 
d 0 e implies a tensorial product of two vectors d and e. 
Insertion of these expressions into (14) finally yields 

(20) 

i.e., both the position and the momentum components 
of the offset vector are reflected on the surface. We note 

Jr _ (Jqi - 2 (Jqi . n) n 
1- Jpi - 2 (Jpi . n) n ­

Here, In = 8nl8qi . Jqc is the variation of n due to 
the displacement Jqc. We observe that the additional 
term A . Jqc appearing in (25) is a consequence of the 
curvature of the collision surface and is orthogonal to the 
final momentuIU PI as can be seen by direct calculation. 

that the reflection rule for the position components is au­
tomatically obtained from Eq. (14) and is a consequence 
of the time difference JTc between the collisions of, the ~ 
reference and the satellite trajectory. Geometrical argu­
ments lead to identical results [19]. 

B. 	Collision of a two-dimensional point particle 

with a curved surface 


Next we consider the collision of a point particle with a 
curved surface. This type of collision occurs, for example, 
in billiards with curved walls, and in the so-called Lorentz 
gas [19]. Again the phase vector, the equations of motion, 
the collision transformation rule and the time delay are 
given by Eqs. (15), (16), (17), and (18), respectively. But, 
due to the curvature of the surface, the normal vector n 
is now a function of the collision point. This must be 
taken into account for the derivation of the collision map 
M: 

8M (1 0) (21)8r = A B ' 

where 

8PI 	 8n 
A = ~ = -2 [n 0 Pi + (Pi' n) 1]·- (22)

8qi 	 8qi 

and 

8PIB = 	 -- = 1 - 2n 0 n. (23)
8Pi 

Thus the operator B corresponds simply to a reflection at 
the collision point. 8nl8q is the matrix of the derivatives 
of the normal vector n with respect to the position of the 
collision point. Equation (14) finally yields 

(24) 

(25) 

where Jqc = Jqi + (Pi/m)JTc is the difference vector in 
configuration space between the collision points of the 
reference and the satellite trajectory. Thus the exact 
transformation rule for the offset vectors becomes 

) (26)
2( (Pi' In) n + (Pi' n) In) . 

For a flat surface In vanishes and Eq. (20) is recovered. ,.-.' 
We now express the tranformation rules (26) in terms 

of the curvature of the collision surface, to make contact 
with previous work [19]. Since n is a unit vector, In 
can be viewed as an infinitesimal rotation and is there­
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(=(E.p)j{p.p). (29) 

t, In collisions with a scatterer the momentum component -
Pi 

I, n 

a 

FIG. 2. Geometry of the collision of a point particle with 
a curved surface. 

fore orthogonal to n. Using the curvature KR, defined 
as the rate of change of the tangent vector orientation 
with growing distance from the collision point, we write 
8n =KR 88 s. Here, 88 is the displacement on the surface, 
and s is the tangent unit vector at the collision point and 
orthogonal to n. We introduce the unit vectors ti and 
t I orthogonal to the vectors Pi and PI, respectively, as 
depicted in 2. Since (Pi' s) n + (Pi' n) S IPi I t I 
and 88 (8qi . ti) j cosa, where a is the incidence angle 
of the particle, the complete transformation rule for the 
offset vector 8ri may be written as 

This expression is identical to that found in Ref. :19]. If 
Eq. (27) is applied to circular scatterers such as in the 
Lorentz gas and in the stadium billiard, the curvature 
KR = ±ljR, depending on whether the collision takes 
place on the outer or the inner side of the circle. 

C. The driven Lorentz gas 

As one of the simplest models for transport in deter­
ministic systems the driven Lorentz gas has been the 
object of several recent studies [20~22l. In this model 
a two-dimensional point particle with mass m is mov­
ing through an array of circular scatterers, on which it 
is elastically reflected. In addition, the particle is sub­
jected to an external homogeneous field E. Furthermore, 
to enforce a nonequilibrium steady state a Gaussian ther­
mostat is coupled to the system. Between collisions with 
the scatterers the particle evolves according to the mo­
tion equations 

pjm ) (28)( E-(p , 

where the thermostat variable is chosen to keep the ki­
netic energy of the moving particle constant: 

perpendicular to the surface of the scatterer changes sign, 
while the parallel momentum component, as well as the 
position of the particle, remains unchanged by the col­
lision. This transformation is again described by (17), 
where the unit vector n points into the direction from 
the center of the scatterer to the collision point. Since 
also the Jacobian of the collision map M as well as the 
configurational part of the equations of motion is identi­
cal to the case treated before, the transformation rule for 
the configuration components is given by Eq. (24). To 
take the effect of the external field and the thermostat 
on the offset vector 8r into account, we write down the 
momentum part of the transformation rule (14): 

8PI = B·8pi + A·8qc 
+{B· [E - ((pdpi] 

[E-((pI )P/]} 8rc , (30) 

where the operators A and B and the time delay 8rc are 
the same as in the previous section. The first two terms 
on the right-hand side of this equation are identical to 
the field-free case (26). However, due to the field an 
additional term emerges. Since the thermostat variable 
(changes by 

-2 (E· n) (Pi·n )
P; (31) 

due to the collision, we finally obtain 

(32) 

where t I is the unit vector normal to PI as before. 
Since the kinetic energy K = p212m is conserved, also 

8K = p·8pjm must be conserved by the collision. As 
can be checked by direct calculation, our transformation 
rules obey this condition. 

We want to make contact with the results of Ref. [20], 

8p" = IEI8rc [sin (Oin <p) + sin (Oout - <p)] t/, (33) 

where Oin and OOtit are the angles of orientation of the 
incoming and outgoing momenta, respectively, and <p de­
termines the orientation of the field E. 8p" is the field­
induced part of 8P/' Since 

- sinOin ) , 
( cos Oin 

and 

sinOO'lLt ) (34)
cos OO'lLt ' 

and t i + tl = 2 (trn) n, we get 

8p" = -28rc (E·n) (trn) t/, (:J5) 

which is identical to the last term of Eq. (32). 
The full transformation can be summarized as 
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(36) 

Thus the joint action of the field and the thermostat gen­
erates an additional term in the momentum-component 
tranformation rule. 

D. Gas of N hard disks 

Now we turn our attention to the calculation of the 
Lyapunov spectra for hard disks (two dimensional) and 
hard spheres (three dimensional). For simplicity we dis­
cuss only disks in the following, but all our considera­
tions are also valid for hard spheres. Consider a system 
of N identical hard disks of diameter 0- and mass m. The 
state of such a system is described by the 4N-dimensional 
Phase space vec t or r (q 1,q2 , ... , q N ,p,1 p 2 , ... , p N) , 
where qi and pi are the position and the momentum of 
the jth disk, respectively. In the times between collisions 
the disks stream according to 

pj /m for J' 1 No , ... , , (37) 

and the equations of motion for the offset vectors are 

8pi /m f . 
o or J 1, ... ,N. (38) 

The streaming is interrupted by impulsive elastic colli­
sions. A transformation to relative and center-of-mass 
coordinates shows that a collision between the disks k and 
I leads to the following transformation in phase space: 

q} = qf for j 1, ... , N, (39) 

p} = p{ for j:f: k,l, (40) 

P~ = pf + (p. q) q/0-2, (41) 

P~ p~ (p. q) q/0-2, ( 42) 

where q = q!-qf and p pi-p~ are the relative posi­
tion and momentum of the colliding disks k and I. The 
positions of all particles and the momenta of all the other 
particles not involved in the collision remain unaffected, 
while the momenta of the colliding particles suffer an 
instantaneous change. Again the collision of the disks k 
and I does not occur simultaneously for the reference tra­
jectory and its satellite trajectory. The time delay 8Tc is 
given by the separation of the two trajectories along the 
vector q connecting the centers of the colliding particles, 
divided by the relative velocity in this direction, 

(8q· q) 
(43)

(p/17/, . q)' 

where 8q = 8qI - 8qk. Next, we calculate the Jacobian 
for the collision matrix M: 

aM 
(44)ar 

where 1 and 0 are the 2N x 2N unit and zero matrices, 
respectively. The 2N x 2N matrices A (amn ) and 
B (bmn ) are composed of the 2 x 2 matrices amn and 
bmn referring to the particle pair m, n for m 1, ... ,N 
and n 1, ... ,N, which are defined by 

apT apT 
8mn = -a and bmn = -an' (45)

qf Pi 

If k and I are the colliding particles one obtains from (41) 
and (42) 

amn 0 if (m,n) 1: {(k,k),(k,l),(l,k),(l,l)}, (46) 

1 
akk = all = - ---- [q (9 p + (q . p) 1] , ( 4 7)

0-2 

(48) 

The product W A, U of A with an arbitrary 2N­
dimensional vector U becomes 

wi OVj::j:.k,l, (49) 

w k akk • uk + akZ . u
l = a· (u1 - uk) = a· u, (50) 

l I
WI = alk . uk + all' u a· (uk - u ) = -a.. u, (51) 

lwhere a. [q (9 p + (q. p) 1] /0-2 and u = u - uk. For 
the matrices b mn we obtain 

bmn = 0 if m::j:. nand (m, n) 1: {(k, l), (I, k)}, (52) 

b mm 1 if m:f: k and m:f: I, (53) 

(54) 

(55) 

The product VB· U of B with an arbitrary 2N­
dimensional vector U reads 

v j u j If j :f: k, I, (56) 
k lv bkk . uk + bkI . u Uk + (u. q) q/0-2, (57) 

vi = b1k • uk + b ll • u l ul (u. q) q/0-2. (58) 

Thus the operator B corresponds to a specular reflection 
in relative coordinates of the components of U belonging 
to the colliding particles. 
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We are now able to apply Eq. (14) to the hard-disk 
system. First we determine the effect of the collision of 
particles k and l on the configuration components of the 
offset vector: 

For j f k, l the momentum does not change in the colli­
sion, and we find 

8qj 8q{ if j f k,l. (60) 

For the components belonging to the colliding particles 
we obtain 

8q7 = 8q: + (pf /m p7/m)87c = 8q: + (8q. q) q/0-2, 

(61) 

8q~ 8q~ + (pUm - p~/m) 87c = 8q~ (8q· q) q/0-2, 

(62) 

where 8q 8ql_8qk. Applying the operators A and B 
we get the transformation rules for the momentum com­
ponent of the offset vector, 

8PI = A· 8Qi + B· 8P i + (A 'Pilm 0)87c 

A . 8 Qc + B . 8Pi, (63) 

where Q (ql,q2, ... ,qN) and P = (P1,P2, ... ,PN) 
are the 2N-dimensional vectors in configuration and mo­
mentum space, respectively. From Eqs. (49) and (56) it 
follows that 

8p~ 8P1 if j f k,l, (64) 

8p~ 8p: + (8p. q) q/0-2 

1+ 0- 2 [(p. 8qc) q + (p . q) 8qcl 1 (65) 

8p~ = 8p~ (8p . q) q/0-2 

- 0-
1 
2 [(p. 8qc) q + (p . q) 8qcl , (66) 

where 8p = 8pl - 8pk. The displacement of the collision 
point 8qc is given by 

(67) 

where 0: is the angle of incidence in relative coordinates 
and s is a unit vector normal to q. Furthermore, we 
observe that (p. s) q/o- + (p. q/o-) s = Ipi t l , where ti 
and t I are defined in the usual way in relative coordinates 
of the colliding particles. In this way we finally obtain the 
full and exact transformation rule for the offset vector: 

8qj = 8q{ if j f k,l, (68) 

8q7 = 8q: + (8q· q) q/0-2, (69) 

8q~ 8q; - (8q· q) q/0-2, (70) 

8pj 8p{ if j f k,l, (71) 

8P7 = 8pf + (8p· q) v0-2 + (8qi' ti) ipl til (72)
0- cos 0: 

8p~ 8p~ - (8p. q) q/0-2 _ (8qi . til ipi t . (73)
0- cos 0: t 

If we combine these rules with the smooth equations of 
motion between collisions we can follow the exact time 
evolution of the offset vectors necessary to calculate the 
full Lyapunov spectrum. 

E. Color conductivity in a gas of N hard disks 

An interesting question is how is the Lyapunov spec­
trum of the hard-sphere system affected by an external 
perturbation? To investigate this question we consider 
the so-called "color conductivity" problem [5,17,18,23]. 
The system consists of N hard disks of equal mass m, 
which carry positive and negative color charges cj = ±1. 
Charge neutrality is assumed: Ef=l d = O. Through 
these charges the particles interact with a homogeneous 
external field E giving rise to the total interaction en­
ergy - Ef=1 ci (E. qi). The interaction between the 
particles is not affected by their color charge. Since 
the charged particles continuously extract energy from 
the field, they are coupled to a Gaussian thermostat to 
achieve a steady nonequilibrium state. The equations 
of motion for the intercollisional trajectory segments be­
come 

(74) 

(75) 

N
E (ciE. pj) 
j=1 

(76)
N
E pj2 
j=l 

The Gaussian thermostat keeps the kinetic energy K 
N 
E (pi)2/2m-or even the total internal energy in the 
j=1 

case of hard spheres-exactly constant. Because of 
charge neutrality also the total momentum of the sys­
tem is conserved if it vanishes for t = O. For simplicity 
we do not thermostat the system with respect to the lo­
cal streaming velocity of the two particle species [17], 
but keep the total kinetic energy in the laboratory frame 
constant. As demonstrated by Posch and Hoover [18], 
this difference has no qualitative effect on the Lyapunov 
instability of the system. 

FrOHl (74) and (75) the linearized equations of motion 
for the offset vectors between collisions are obtained: 

(77) 
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(i8) 

oq~ = oq! - (oq· q) q/0"2, (88) 

(89) 

Since with the constraint of conserved total energy the 
collision rules between particles do not change even in 
the presence of a driving field, the collision map M and 
also its derivatives oM/or are the same as in the case of 
unperturbed hard disks in equilibrium and need not be 
repeated here. Also the collision delay time OTe does not 
change. This implies that also the transformation rules 
for the configurational components of the offset vectors 
remain unchanged. However, the presence of the field and 
thermostat is responsible for an additional term oP~ in 
the momentum tranformation rules. From (14) and the 
multiplication rules for the matrix B of the components 
belonging to the noncolliding particles we get 

if j of. k, I. (i9) 

The momenta of these do not change, i.e., Pi = 
PI' This implies 

(80) 

w here ~( == ( (P I) ( (Pi) is the change of ( due to the 
collision of particles k and I: 

Here, c = (c1 
- ck

) is the charge difference of the colliding 
particles. For collisions of particles with the same charge 
~( vanishes and, consequently, the additional term op} 
vanishes for noncolliding particles. For the momentum 
component belonging to the colliding particles we can 
write 

Op7 [ckE-((Pi)pf ckE+((P/)p1JOTc 

+ (cE· q) q/0"20Te1 (82) 

oP~ = [cIE-( (Pi) P; cIE+( (P I) P~ ] OTe 

(cE· q) q/0"20Te , (83) 

which leads to 

(84) 

(85) 

In summary, the total transformation rules for the 
color-conductivity system are given by 

oq} oq{ for j of. k, I, (86) 

(8i) 

op} = opf + (op· q) q/0"2 + --------Ipl tl 
0" cosa 

+ (~(pf + :2 (E· q) q) ore, (90) 

op~ = op~ - (op. q) q/0"2 -'--=---'-1pitI 
0" cos a 

+ (~(p~ - :2 (E· q) q) ore' (91) 

We note that these rules obey oK I:(opj. pj)/m 
as they should for the total kinetic energy to be con­
served. Also oQ := I: oqj 0 and OP opj 0 hold 
as required by the conservation of the center-of-mass and 
linear momentum, respectively, provided that these con­
ditions are fulfilled initially. We come back to this point 
in Sec. IV B. 

It is worth mentioning that one may derive approxi­
mate algorithms by not taking the limit in Eq. (3) and 
treating or (t) as a small but finite separation vector in 
phase space. We have used this method for checkingom:,~~ 
exact procedures outlined above, which treat or (t) as a 
true tangent vector. 

In the next section we describe the details and the ~ 
results of our simulations for the two-dimensional hard­
disk system in equilibrium and in nonequilibrium steady 
states. 

IV. RESULTS 

In all our numerical work we use reduced units for 
which the disk diameter 0", the disk mass m, and the 
Boltzmann constant k are equal to 1. The unit of time 
is (m0"2 N / K)l/2, where K is the total kinetic energy. 
The density of the system is defined by p = N/A, where 
A = L",Ly is the area of the simulation cell, and Lx and 
Ly are the lengths of the simulation box in the x and y 
directions, respectively. We use periodic boundary con­
ditions in both coordinate directions. In order to be able 
to simulate high density systems, we use a simulation box 
with an aspect ratio of L y/ Lx 2/J3 ~ 1.154i, which is 
compatible with the triangular close-packed lattice and 
deviates only slightly from a square shape. For the ini­
tial conditions the disk centers were located on a regular 
triangular lattice, and the momenta were chosen from a 
Gaussian distribution with zero mean and then adjusted 
to make the total momentum vanish. It suffices to con­
sider a single isotherm for an unperturbed hard system. 
Since also Lyapunov exponents are proportional to ..fT, 
we restrict ourselves to the case K = N, i.e., the kinetic ~ 
energy per particle is equal to 1. Thus, the only free 
parameter is the density p. For the temperature T the 
kinetic theory definition, K p2/2m = (N -l)kT, is 
used throughout. 

0 
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As usual for the simulation of hard spheres we use a 
collision-by-collision approach. The collisions of the par­

~ 	ticles as well as the intersections with the simulation-box 
boundaries are treated exactly, so that our simulation 
results remain valid also for very low densities, since no 
collision event is missed. 

A. Equilibrium systems 

We computed full Lyapunov spectra for various den­
sities and particle numbers. Since this requires the si­
multaneous integration of 4N(4N+1) >:::: 16N2 equations 
of motion, we restrict ourselves to N = 64 and N = 144 
particles corresponding to 256 and 576 exponents, respec­
tively. These numbers are too small to allow a complete 
assessment of the thermodynamic limit, but suffice to 
give an overview of hard-disk Lyapunov spectra. Just 
as in the continuous case, we found that after a few col­
lisions the Smale-pairing rule is obeyed exactly also for 
the local expansion and contraction rates of the offset 
vectors [24]. The computation of Lyapunov spectra for 
constrained continuously interacting particle systems has 
been discussed recently in Ref. [25]. 

Figures 3 and 4 show typical spectra for 64-disk and 
144-disk systems, respectively, for the densities p = 
0.20"-2,0.40"-2,0.60"-2,0.80"-2, and 1.00"-2. All spectra 
are normalized by their respective maximum exponents 
Al listed in Table L On the abscissa the index i enu­

~ merates conjugate pairs of exponents such that i 2N 
corresponds to the maximum and minimum exponents, 
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p = 1.0 
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FIG. 3. Lyapunov spectra, normalized by the maximum 
exponent AI, for an equilibrium system of 64 hard disks and 
for densities p 0.20'-2, 0.40'-2, 0.60'-2, 0.80'-2, and 1.00'-2 

(from bottom to top). The respective Al is listed in Table I. 
....... 	 The index i labels the Lyapunov exponents, which are defined 

only for integer i. For clarity a solid line is drawn through all 
exponent points. Only the positive branches of the spectra 
are depicted. The density p = NIA is given in units of 0'-2, 
where 0' is the disk diameter. 
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FIG. 4. Lyapunov spectra, normalized by the maximum 
exponent Al, for a system of 144 hard disks in equilibrium 
and for densities p = 0.20'-2, 0.40'-2, 0.60'-2, 0.80'-2, and 
1.00'-2 (from bottom to top). The respective Al is listed in 
Table I. The index i labels the Lyapunov exponents, which 
are defined only for integer i. For clarity a solid line is drawn 
through all exponent points. Only the positive branches of 
the spectra are depicted. The density p N IA is given in 
units of 0'-2, where 0' is the disk diameter. 

i = 2N-1 to the next smaller and next larger exponents, 
and, finally, i = 3 to 1 refer to vanishing exponent pairs. 
Since the spectra in these figures belong to equilibrium 
systems, only the positive branches of the spectra are de­
picted. From the rate of convergence one can infer that 
the accuracy of the exponents presented in this and the 

TABLE I. Parameters characterizing the Lyapunov spectra 
for a system of N hard disks in equilibrium. p is the particle 
density in units of 0'-2. The collision rate liT, the maximum 
Lyapunov exponent AI, the smallest positive Lyapunov expo­
nent A2N-4, and the Kolmogorov-Sinai per particle 
hKSIN are all given in units of 

N p liT A2N-4 Al hKSIN 
64 0.1 12.9 0.121 1.275 0.726 
64 0.2 29.6 0.258 1.850 1.326 
64 0.3 52.1 0.424 2.359 1.961 
64 0.4 83.0 0.631 2.908 2.679 
64 0.5 126.7 0.886 3.528 3.520 
64 0.6 192.4 1.180 4.281 4.582 
64 0.7 295.3 1.596 5.232 5.957 
64 0.8 468.5 2.206 6.506 7.848 
64 0.9 596.3 2.825 7.165 9.086 
64 1.0 999.2 4.287 9.060 12.242 

144 0.2 67.0 0.550 1.919 1.330 
144 0.3 117.0 0.862 2.436 1.959 
144 0.4 186.9 1.233 2.974 2.675 
144 0.5 286.0 1.664 3.603 3.527 
144 0.6 434.5 2.219 4.367 4.592 
144 0.7 662.3 2.912 5.403 5.951 
144 0.8 1052.6 3.857 6.664 7.843 
144 0.9 1356.2 4.531 7.341 9.143 
144 1.0 2258.0 6.132 9.252 12.296 
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subsequent figures is better than ±0.5%. We find that 
all exponents grow with increasing density. One remark­
able feature is that the smallest nonvanishing positive 
exponent A2N-4 is rather large, quite different from the 
spectral shape found, for example, for Lennard-Jones liq­
uids and solids [18,26]' linear molecules [27], planar rota­
tors [28], the Fermi-Pasta-Ulam (FPU) model [29], and 
even in products of random symplectic matrices [30], to 
mention only a few. All these systems, with the obvi­
ous exception of random matrices, have in common that 
their components interact with smooth potentials. We 
observe that for increasing density the spectra in Figs. 3 
and 4 tend to become flatter. This is confirmed by Fig. 
5, which depicts two normalized spectra at very low and 
very high densities. As the density approaches the close­
packed density all Lyapunov exponents converge towards 
the same value. 

Figure 6 shows the maximum and the smallest positive 
exponent, Al and A2N-4' and the Kolmogorov-Sinai en­
tropy per particle, hK S / N, as a function of the density 
for a 64-disk system. The simulations include from 105 

to 106 collisions depending on the density. This guaran­
tees an accuracy better than 0.5% for all nonvanishing 
Lyapunov exponents shown. We have already mentioned 
before that Al increases monotonically with density. It 
has a singularity at the close-packed density due to the di­
vergence of the collision rate and converges towards zero 
in the limiting case of low densities. The same is true 
for hKS, which, after Pesin [31]' in Hamiltonian systems 
equals the sum of all positive Lyapunov exponents. It 
has been shown by Sinai that the entropy per particle of 
a hard-sphere gas converges towards a well defined value 
in the thermodynamic limit of N -t ex:> [32]. It is ob­
vious from this figure that the density dependence of Al 

and hKS closely resembles that ofthe pressure calculated 
from the virial [33]. 

AI, A2N-4, and hKS are also strongly affected by the 
phase transition occurring for densities p ~ 0.860'-2. 

piPo 0.9999 

0.5 

piPJ = 8.66 10-7 

?"( 0 
?"( 

-0.5 

-I 

0 5 10 15 20 25 30 

FIG. 5. Normalized Lyapunov spectrum of N 32 hard 
disks at the densities = 0.9999 and pipo 8.66 x 10-7 

, 

where Po = is the close-packed density. 
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FIG. 6. Maximum Lyapunov exponent (,),l), smallest pos­
itive exponent (,),2N-4), and Kolmogorov-Sinai entropy hKS 

per particle [all in units of (KlmNu2?/2] for the 64-disk sys­
tem as functions of the density p (in units of 0'-2). 

This can be attributed to the density dependence\ of the 
collision rate. In 7 the Kolmogorov-Sinai en~ropy 
per particle is shown as a function of the collision\rate 
l/T, where T is the collision time taken from the sumhla­
tions. Even for collision rates corresponding to the phase 
transition [1fT ,...., 600(K/NmO')1/2], no singularity ap­
pears, which proves our assertion. This is an important 
result since it provides the possibility of interpreting the 
mechanical instability in terms of the Enskog theory for 
hard-disk systems. 

In order to determine the functional dependence of the 
maximum exponent in the low density limit we performed 
a series of simulations of a 64-disk system for densities 
ranging from 10-6 0'-2 to 10- 10'-2. At the lowest density 
the mean free path exceeds 4 x 105

0' . In Fig. 8 Al is plot-

FIG. 7. Kolmogorov-Sinai entropy per particle as a func­
tion of the collision rate for the 64-disk system. Both hKS 

and liT are in units of (Klml'hJ'2//2. 

,Al:'"' 

~' 

~, 
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FIG. 8. Low density dependence of the maximum Lya­
punov exponent Al for a 64-disk system (diamonds). For 
each point at least 50000 collisions were computed leading 
to an accuracy better than 1%. The smooth line is a fit of 
the Krylov relation ap In(p /b) to the data points. p is given 
in units of 0' -2, and Al is measured in units of (K / N m0'2) 1/2. 

ted as a function of the density. The open symbols are the 
results of our simulations, whereas the line represents a 
fit of the relation).l 0( -plnp to our data. This relation 

,4110. 	 was proposed by Krylov [34] by considering the angular 
divergence of trajectories starting from the same point 
in configuration space with momenta pointing in direc­
tions separated by small angle differences. Sinai [34] and 
Gaspard and Wang [35] discussed this relation in some 
detail. van Beijeren and Dorfman [36] derived it for the 
two-dimensional Lorentz gas by solving the Boltzmann­
Lorentz equation and succeeded in determining the pro­
portionality constant and the first correction. 

There is numerical evidence that a thermodynamic 
limit exists for the Lyapunov spectrum. This has been 
emphasized by Livi, Politi, and Ruffo for the one­
dimensional Fermi-Pasta-Ulam chain (fJ model) [29], and 
by Hoover and Posch, who computed the maximum ex­
ponent for two-dimensional nonequilibrium systems with 
Sllod (so named because of the dose relationship with the 
Dolls tensor algorithm) equations of motion for particle 
numbers ranging from N = 64 to 32400 [4]. Our numeri­
cal results are in agreement with these findings. Figure 9 
shows the maximum exponent for densities p = 
and p = 0.60'-2 as a function of 1/-IN. ).1 for N 4096 
is already close to its thermodynamic limit, whereas 
).2N-4 seems to approach zero. However, a logarithmic 
singularity cannot be excluded. Figure 9 also suggests 
that the step in the spectra for small indices i does not 
persist in the thermodynamic limit and is therefore a 
peculiarity of small systems. We expect-but cannot 

... 	 prove-isochoric convergence to a thermodynamic-limit 
spectrum in accordance with theoretical expectation [37]. 
It is worth mentioning, however, that there is no ther­
modynamic limit for the root mean square displacement 
[38-40] in two dimensions. 
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FIG. 	9. Specified Lyapunov exponents as a function of 
for various densities p. Al is the maximum exponent 

and A2N-4 the smallest positive exponent, both measured in 
units of (K/mN0'2)l/2. The density is given in units of 0'-2. 

B. Color conductivity of hard-disk systems 
in nonequilibrium steady states 

Up to now, nonequilibrium phenomena involving hard 
particles have been mainly investigated for a two-particle 
system in two dimensions. In this so-called Lorentz gas 
shear viscosities and conductivities have been calculated 
by nonequilibrium molecular dynamics [20-22,41,42J. 
For heat conduction, which has also been studied [43], 
at least three hard disks are required. In this section we 
present the results of our simulations of many-body hard­
disk systems subjected to an external color field. This 
model is described in detail in Sec. III E, where also the 
algorithm for the computation of Lyapunov exponents is 
derived. 

We use the same periodic boundaries and initial con­
ditions as in the equilibrium case. The particles are al­
ternately assigned the color charges +1 and -1. For an 
even number of particles charge neutrality is automati­
cally achieved, which is required for the conservation of 
total momentum. For an odd number of particles frac­
tional charges are used to fulfill this requirement. 

In contrast to the equilibrium case no analytical solu­
tion for the intercollisional trajectory is available, and 
the equations of motion in phase space and in tan­
gent space are integrated numerically. We use a fourth­
order Runge-Kutta integrator [44] with a time step of 
l:J.t = 0.01(m0-2N/K)1/2. This assures that the relative 
kinetic energy fluctuations are below 10-7 . The coordi­
nates of two colliding disks are numerically determined 
with an accuracy of 10-6 0- and the respective collision 
rules derived in Sec. III E are applied to the phase space 
vector and the tangent space offset vectors. This error 
level is perfectly adequate for the desired accuracy of the 
resulting Lyapunov exponents. 
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The disks moving under the influence of the external 
perturbation continually extract energy from the field 
and must therefore be thermostatted to achieve a steady 
state. The system is dissipative and the phase space dis­
tribution collapses onto a multifractal strange attractor 
with information dimension less than the phase space 
dimension. Since the collisions conserve phase volume, 
shrinking takes place only in the intercollisional trajec­
tory segments and is obtained from the phase space di­
vergence of equations of motion (74)-(76): 

4N 

(Vr .r) = LAl (2N - 1)((). (92) 
1=1 

This equation holds if the offset-vector dynamics is fol­
lowed in the full 4N-dimensional phase space and no ex­
plicit constraints following from momentum conservation 
are invoked (see the discussion at the end of this section). 
Since the time average of the phase space divergence is 
equal to the sum of the Lyapunov exponents and (() is 
positive, the sum of the Lyapunov exponents is negative. 
The Smale pairing is replaced by the conjugate pairing 
rule [6,45] 

(93) 

According to (76) the thermostat variable is given by 

( = (J . E)/2K, (94) 

where J 2.::i cipi /m is the total color current of the 
system [18,26]. We define the field-dependent nonlinear 
conductivity by /'i, = j/IEI, where j (J. E)/NIEI is the 
average current per particle in the field direction. 

1. Systems with 64 hard disks 

In Fig. 10 typical Lyapunov spectra of a 64-particle 
system for the densities p = 0.40"-2,0.60"-2 and 0.80"-2 

are shown. The labels a, b, and c refer to the strength of 
the field pointing in the x direction. For low fields (curve 
a) the steplike shape typical for hard disks is still ob­
served for small indices i. For higher fields (curves band 
c) this step is gradually smoothed out. We note that the 
small exponents are affected most by the external per­
turbation. In addition, due to the action of the field the 
whole spectrum is shifted towards more negative values 
in accordance with the pairing rule. This shift is obvi­
ous from the solid horizontal lines in the figures which 
connect the arithmetic means for the respective conju­
gate pairs of Lyapunov exponents. For a given field the 
arithmetic mean decreases with increasing density. 

A series of simulations was performed to study the 
field dependence of the maximum Lyapunov exponent 
as a function of the field strength, where the field vec­
tor pointed in the x direction parallel to one side of the 
simulation box. Figure 11 shows that for large densi­
ties (p = 0.80'--2) the maximum exponent A1 is nearly 
constant over the whole range of fields, whereas it de­
creases slowly with increasing field for lower densities 
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FIG. 10. Full Lyapunov spectra of a 64-disk 

the densities p = 0.40"-2 (top), p 0.60"-2 (middle), and ~< 
p 0.80"-2 (bottom). The labels a-c refer to the applied 
color field: a: E = (O.l,O.O)KjNO"; b: E = (0.5,0.0)KjNo-; 
and c: E (1.0,0.0)KjNo-. The field always points in the x 
direction. On the abscissa the exponent pairs are numbered 
by an index i. They are defined only for integer i; for clar­
ity the points are connected by a solid line. The arithmetic 
mean of conjugate Lyapunov exponent pairs is also indicated 
by the solid horizontal lines, which differ significantly and vis­
ibly from zero for p = 0.40-- 2 and for the largest field. All 
exponents are measured in units of (KjNm0"2)1/2. 
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FIG. 11. Maximum Lyapunov exponent of a 64-disk ,1."'" 

color-conductivity model for the densities p 0.40-- 2 and 
p = 0.80-.- 2 as a function of the field The field 
vector points in the x direction and is measured in units of 
KjNO". 



1497 LYAPUNOV INSTABILITY IN A SYSTEM OF HARD DISKS ... 

0.9 

0.8 

0.7 

0.6 

0.5 
:c 

0.4 

OJ 

0.2 

0.1 

0 

~\ 

1\ ~ I \ I \ 
~~V\ 

p = 0,4 

P = 0.8 

'" ",""v ~ 
.~ 

0 0.2 0.4 0.6 0.8 1.2 1.4 1,6 1.8 2 

E 

FIG. 12. Field dependence of the color conductivity of a 
64-disk system for the densities p = 0.40'-2 and p 0.80'-2. 
The conductivity is measured in units of (0'2NIKm)1/2, and 
the field in units of KINO'. 

(p 0.40'-2). 
At higher fields the system can be trapped in non­

ergodic trajectories, where the particles drift past each 
other without collisions. The probability of such states 
increases with higher fields. The irregular behavior of 
Al for strong fields in Fig. 11 means that the system 
has reached such an ordered state characterized by small 
or vanishing Lyapunov exponents, and that Al has not 
yet converged in spite of a long simulation run. This 
irregularity is visible also in Fig. 12, which shows the 
conductivity as a function of the field strength. K is only 
weakly dependent on E except for these singular states. 
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FIG. 13. Fraction of collisions between particles carrying 
opposite charges for a 64-disk color-conductivity model at the 
densities p = 0.40'-2 and p = 0.80'··2 as a function of the field 
strength. The field points in the x direction and is measured 
in units of KINO'. 

FIG. 14. Snapshot of a typical nonequilibrium steady-state 
configuration of a 100-disk color-conductivity system at a den­
sity of p = 0.60'-2. The color field E (2,0) KINO' points 
in the x direction. The instantaneous particle velocity is in­
dicated by the arrows. 

Of course, for these states the current is bounded only 
by the action of the thermostat, which results in a high 
conductivity. for this singular behavior the con­
ductivity decreases with increasing density, as expected. 

If the system is driven at high enough dissipation rates, 
an interesting demixing instability occurs as was observed 
by Evans, Lynden-Bell, and Morriss [46]. In contradic­
tion to intuition the fraction of collisions between disks 
carrying opposite color charges decreases with increasing 
field strength as may be seen in 13. This behavior 
is explained, however, by Fig. which shows a typical 
steady-state configuration of a 100-particle system at a 
density of 0.60'-2 and with a field E (2,0) (mK/N)1/2 
in the x direction. One observes the formation of clusters 
of particles with the same color charge. The clusters are 
not stable, but are continuously formed and disrupted 
again. Since a particle belonging to a cluster is more 
likely to collide with one of the surrounding disks car­
rying the same color charge, the fraction of collisions of 
particles with opposite charges decreases. 

2. Systems with three and four hard disks 

The conjugate pairing rule (93) has been rigorously 
proved only in the limit N -+ 00 when corrections of 
o (l/N) can be neglected [6,17,45,47]. In order to check 
whether or not an N dependence may be observed and a 
pairing rule exists for systems with only a few particles, 
we performed a series of color-conductivity simulations 
with N = 3 and N = 4 particles. For N 3 two disks 
carry a color charge c = 2/3 and one a charge c = -4/3 
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such that the total color charge vanishes. If the density 
of the system is low and the driving field strong, the sys­
tem is observed to converge towards a limit cycle after a 
few collisions on which the disks drift collision-free in the 
field direction. A similar phenomenon was responsible for 
the singular behavior at large fields for the 64-disk simu­
lations of Figs. 12 and 13. In order to avoid such noner­
godic trajectories characterized by a Lyapunov spectrum 
without positive exponents, we choose a field direction 
which is not parallel to one side of the simulation box. 
This ensures that, due to the periodic boundaries, a disk 
traveling in the field direction necessarily collides with a 
disk carrying an opposite charge. 

Figures 15 and 16 show the results of these three- and 
four-particle simulations, where Lyapunov spectra are de­
picted for a density of p 0.50-- 2 and for the field com­
ponents indicated by the labels. For clarity the various 
exponents belonging to one spectrum and defined only for 
integer i are connected by solid lines. For each conjugate 
pair of exponents their arithmetic mean (A/ +A4N+1-/) /2 
is also connected by the dashed horizontal lines. The re­
spective conductivities K, the time averaged thermostat 
variables ((), and the maximum Lyapunov exponents A1 
for these runs are listed in Table II. 

Let us discuss the three-particle case in more detaiL 
The spectra in Fig. 15 were obtained by performing the 
simulation in the full 12-dimensional phase and tangent 
spaces without explicit consideration of the natural con-

6,-----,-----,.----,-------r--------. 

N 3 
4 

2 

-2 

-4 

-6 L-__-L ~___~____L ~ 

1 2 3 4 5 6 

FIG. 15. Lyapunov spectra of a three-disk color­
conductivity system in nonequilibrium steady states specified 
by the density p = 0.60"-2 and the fields indicated by the la­
bels. The field components are in units of KINO". Only 
the magnitude of the field is varied, its direction is kept fixed. 
Six pairs of conjugate Lyapunov exponents are arranged ac­
cording to an index i along the abscissa. Points denoting the 
arithmetic means of conjugate Lyapunov exponent pairs are 
connected by dashed lines. The Lyapunov exponents are mea­
sured in units of (KINm0"2) 1/2. For details we refer to the 
main text. 

stants of the motion-kinetic energy, linear momentum, 
and center of mass. (It should be noted that due to the 
periodic boundaries the center of mass is not literally 
conserved. But since this does not affect the dynamics 
in tangent space each component of the center of mass 
still causes one of the Lyapunov exponents to vanish.) 
There are altogether 12 exponents for each spectrum ar­
ranged in such an order that the conjugate pair AI, A12 
is located at index i = 6, the pair A2, All at i = 5, 
and, finally, the two vanishing exponents, A6 and A7, at 
i 1. In view of the five constants of the motion and 
the vanishing exponent in the direction of the phase flux 
one expects six of the exponents to vanish. However, 
an inspection of Fig. 15 reveals that there are only four 
vanishing exponents, A4-A7, with two further exponents 
A8 A9 = -(C) < O. The reason for this discrepancy is 
clarified if one realizes that the quantities 

N 

0, LPj2/2m K (95) 
j=1 j=1 j=1 

are constants of the motion for a charge-neutral system 
with vanishing total momentum. Then the respective 
components of the tangent vectors obey 

N N 

Loqi == oQ = 0, Lopj oP = 0, 
j=1 j=1 

N 

L(pj . opJ)/m == oK O. (96) 
j=1 

4 

3 N=4 E = (2.0,1.0) 

2 

0 

-1 

-2 

-3 

-4 

-5 

E = (3.0,1.5) '" 

1 2 3 4 5 6 7 8 

FIG. 16. Lyapunov spectra of a four-disk color-conductiv­
ity system in nonequilibrium steady states specified by the 
density p 0.60"-2 and the fields indicated by the labels. 
The field components are given in units of KINO". Only the 
magnitude of the field is variedj its direction is kept fixed. 
Eight of conjugate Lyapunov exponents are arranged 
according to an index i along the abscissa. Points denoting 
the arithmetic means of conjugate Lyapunov exponent pairs 
are connected by dashed lines. The Lyapunov exponents are 
measured in units of (KINm0"2)1/2. For details we refer to 
the main text. 
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TABLE II. Parameters characterizing a planar nonequilib­
dum steady-state system of N 3 and N 4 disks subjected 

-. to an external color field E (E"" Ey). The field components 
are given in units of KING'. The color conductivity K is given 
in units of (G'2NIKm)I/2, the time averaged thermostat vari­
able (() and the maximum Lyapunov exponent Al in units of 

4 (3.0, 1.5) 0.126 0.71392 3.359 
4 (4.0, 2.0) 0.173 1.73552 2.458 

Each of these five constraints constitutes a hyperplane 
in tangent space. If one follows the dynamics of 4N or­
thonormal offset vectors in the full 4N-dimensional tan­
gent space there is necessarily one of these vectors per­
pendicular to this constraint plane, thus violating the 
respective constraint. It was noted at the end of Sec. III 
E that the quantities 8Q, 6P, and 6K are not affected by 
the hard-core collision map. However, for the streaming 
between collisions we find from the linearized equations 
of motion (78) 

6Q = 0, 6P -(6P, 6"K = O. (97) 

It follows that offset-vector components perpendicular 
to the center-of-mass and energy hyperplanes in tangent 
space do not change at all in the course of time and conse­
quently contribute three vanishing Lyapunov exponents 
to the spectrum. The two vector components normal to 
the two hyperplanes associated with linear momentum 
conservation, however, shrink and lead to the two nega­
tive exponents A8 A9 - (() < 0 for the case N 3. 

As suggested in [25] the dynamics can be followed also 
in the r'educed phase space of the first N 1 particles by 
expressing qN, PN, 6qN, and 6PN in terms of the re­
spective negative sums of the remaining N - 1 particles. 
There are, of course, 4(N -1) Lyapunov exponents in this 

case, of which two vanish due to energy conservation and 
the phase flux direction. We have experimentally verified 
that the Lyapunov spectra obtained with both methods 
are identical except for the four exponents missing in 
the reduced phase space description: two vanishing ex­
ponents due to center-of-mass conservation (A4 and A5 
for N = 3 in Fig. 15), and two exponents equal to -(C) 
&<;sociated with this subtle violation of the momentum­
conservation constraint in tangent space (A8 and A9 for 
N 3). Furthermore, in the reduced phase space de­
scription the expression for the phase space divergence 
(92) must be replaced by 

4(N -1) 

(Vrred . fred) L Al -(2N 3)((). (98) 
[=1 

The case of N = 4 particles in Fig. 16 is completely 
analogous and need not be discussed any further. It is 
also obvious that a system of only N = 2 particles has 
only one nontrivial conjugate pair of nonvanishing expo­
nents and is therefore unsuited for a test of the conjugate 
pairing rule. 

All spectra in Figs. 15 and 16 are for the same density 
p = 0.50-- 2 • The external field is indicated by the labels. 
It varies only in magnitude but not in direction. Each 
run was followed for 5 x 107 time steps corresponding 
to 1.6 x 106 collisions for the three-disk svstem. and to 
1.8 x 106 collisions in the four-disk case. I; thes~ figures 
all points denoting the arithmetic means of nonvanishing 
conjugate pairs of the various spectra are connected by 
dashed lines. A close inspection of these results reveals 
that any possible deviation from an exact pairing rule-­
if it exists at all-is very small. To make this statement 
more precise we have listed in Table III the conjugate 
pair sums Al + A4N+l-I' l = 1,2, ... , 2N 1, for various 
spectra obtained with N 2 and N = 3 particles. Their 
maximum relative deviation is less than 0.1%in all cases. 
The pair sums also agree extremely well with - () listed 
in Table II---as required by Eq. (93) for the conjugate 
pairing rule to hold. 

Tiny numerical deviations of a few pair sums from their 
mean may be noticed in Table III, but only for the largest 
applied color fields and still smaller than the accuracy 

TABLE III. Sums of conjugate Lyapunov exponent pairs At + A4N+1-t for a stationary nonequi­
librium color-conductivity simulation of a planar hard-disk system containing N 2 or N 3 
disks. 1 denotes the exponent pair (l 1 refers to the sum ),1 1- ),4N of the maximum and the 
minimum exponents). The components of the color field E = (E."Ey) are given in units of KING' 
and the Lyapunov exponent sums in units of 

2 -0.16518 -0.35873 -0.61916 -0.71394 -1.7355 
3 -0.16518 -0.35873 -0.61916 -0.25625 -0.71394 -1. 7355 

4 -0.16517 -0.35869 -0.61910 -0.25623 -0.71393 -1.7355 
5 -0.16518 -0.35872 -0.61916 -0.25622 -0.71396 -1.7347 
6 -0.25622 -0.71390 -1.7339 
7 -0.25623 -0.71394 -1.7355 
--...---.~~~-..--...----... --_.­
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claimed in this paper. Work is in progress for a further 
reduction of the error bars. 

We conclude that the conjugate pairing principle is nu­
merically confirmed to within an accuracy of better than 
0.1% for our systems as small as three and four particles. 

V. SUMMARY 

In this paper we have presented a method for the cal­
culation of full Lyapunov spectra in systems for which 
the smooth phase space flux is interrupted by a differ­
entiable map at discrete times. We derived the exact 
transformation rules for the tangent space offset vectors 
for systems of hard spheres in equilibrium and in nonequi­
lbrium steady states. 

Full Lyapunov spectra were obtained for a whole range 
of densities p and particle numbers N. For small parti ­
cle numbers (N ~ 64) the spectra display an interesting 
steplike shape, which is smoothed out for larger Nand 
does not seem to persist in the thermodynamic limit. 
From the positive branch of the Lyapunov spectrum the 
Kolmogorov-Sinai (KS) entropy was calculated. In the 
density regime of the fluid-solid phase transition the KS 
entropy is found to have a local maximum. As the den­
sity approaches the close-packed density the KS entropy 
as well as the maximum Lyapunov exponent diverge due 
to the singularity of the collision rate. For low densities 
the maximum Lyapunov exponents behaves as - pIn p, 
as conjectured by Krylov on the basis of a mechanical 
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