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Abstract 

Simultaneous integral control of the kinetic energy <K) and its fluctuation <K 2) <K i gives an extended phase-space 
distribution consistent with Gibbs' canonical one_ This generalization of the Nose-Hoover approach to thennostatting is the 
simplest time-reversible scheme to exhibit ergodicity for the one-dimensional hannonic oscillator. It is also applicable to 
equilibrium and nonequilibrium many-body simulations. 

1. Canonical dynamics 

Nose discovered a dynamics consistent with 
Gibbs' canonical ensemble in 1984 [1]. His approach 
uses time-reversible integral feedback to control the 
kinetic energy. For a harmonic oscillator with unit 
mass and force constant, Hamilton's motion equa­
tions are 

q p, p q. 

Noses approach [1] adds temperature to the motion 
equations through a time-reversible friction coeffi­
cient (;, with an associated relaxation time T. With­
out loss of generality we consider specifically unit 
temperature, kT 1, for which the Gibbsian average 
value of the kinetic energy is t, 
<K) = <tp2)=-t.. _ 
A time-reversible frictional force (;p is introduced 
in order to control the kinetic energy. Applying the 
continuity equation for the probability density, 

ai/at - a(jq) /aq - a(!p) lap - a(ft)!a{; 
=0, 

of the flow equations, 

q p. p=-q-{;p, t (p2_l)/T2, 

in the "extended" phase-space {q, p, n. shows that 
the motion equations are consistent with an extended 
form of Gibbs' canonical distribution, 

I a exp [ Hq 2 + P2 + T 2{; 2 )] • 

It is noteworthy that the flow equations are time 
reversible (with both p and (; changing sign in the 
reversed motion). 

Numerical exploration of Nose's motion equa­
tions [21. as well as some more-complicated rela­
tives, reveals a fairly common lack of ergodicity, 
with the harmonic-oscillator phase space partitioned 
into separate regular and chaotic regions (Fig. 1). 
During the decade following Nose's work many 
additional suggestions [3-11] were made with the 
intention of achieving ergodicity by using additional 
control variables. 

Thermostats are, by and -large;"ad"hoc'modifica­
tions of the equations of motion;though'it'istrue that 
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some satisfy variational principles, such as Gauss' 
principle of least constraint and Hamilton's principle 
of least action [I2]. Aside from such variational 
bases, the only lasting criteria for the relative merits 
of the various approaches are Occam's, elegance and 
simplicity. We summarize previous work in Section 
2, and describe what seems to us the simplest ap­
proach to canonical ergodicity in Section 3. We 
illustrate this kinetic moments method for three ex­
ample problems. The final section summarizes our 
conclusions. 

2. Previous work 

Nose's original description of his dynamics [1] 
introduced two distracting notions, "virtual" vari­
ables and time scaling, as consequences of his origi­
nal approach through Hamiltonian mechanics. 
Hoover [2] emphasized the desirability of abandon­
ing Nose's Hamiltonian basis in order to avoid these 
unnecessary concepts. Nevertheless, the confusion 
associated with the virtual variables and time scaling 
persists. 

Jellinek and Berry [3,4] considered the most gen­
eral Hamiltonian approach to the canonical distribu­
tion. Multiplicative scalings of coordinates, mo­
menta, and time are all included. Their work is 
primarily formal, rather than numerical, and their 
approach excludes all known useful schemes. They 
suggest that the equivalence of time and phase aver­
ages for non-Hamiltonian approaches is problematic, 
though the basis for that claim is unclear. The non­
Hamiltonian example which we present in Section 3 
provides an example of the time-average phase-aver­
age equivalence, and should prove helpful in evaluat­
ing the merits of the formal approaches. 

Bauer, Bulgac, and Kusnezov [5] consider the 
thermostatting problem in rather different, but still 
quite general, terms, without insisting on a Hamilto­
nian basis. They provide a host of interesting 
worked-out examples. Their work, like that of Refs. 
[4,6] considers additive, rather than multiplicative, 
terms in the equations of motion, and certainly in­
cludes our own favorite procedure as a special case. 
We regard additional additive forces as more physi­
cal than additions to the coordinate equ?tion, If = p. 
We use this distinction to motivate the present work. 

Hamilton [7] emphasized the requirement that any 
reasonable modified equations of motion must still 
satisfy the virial theorem. It seems to us that this 
requirement is satisfied automatically by any dynam­
ics which is consistent with Gibbs' distribution. Win­
kler [8] used a special time scaling, resembling 
Nose's, but lacking in the additivity of the force 
contributions. 

Martyna, Klein, and Tuckerman [9], introduced a 
"chain" of frictional variables, retaining the additiv­
ity of the thermostatting forces. Holian pointed out 
that this approach, while perfectly valid at equilib­
rium, is no longer effective in controlling the desired 
temperature, (p2 ) T, away from equilibrium. 
Evans and Holian [11] demonstrated that many dif­
ferent thermos tatting approaches predict very similar 
results in three-dimensional shear-flow simulations 
far from equilibrium. 

The many varied approaches just reviewed sug­
gest several desirable properties for thermostatting 
(or control) forces: 

(1) Time reversibility; 
(2) Additivity, affecting the equation of motion 

for momentum; 
(3) Ergodicity, providing the complete canonical 

distribution; 
(4) Applicability away from equilibrium; 
(5) Hamiltonian basis. 
There is considerable evidence that nonequilib­

rium systems cannot be described by a straightfor­
ward generalization of Hamiltonian (or Lagrangian) 
mechanics, so that properties (4) and (5) may well be 
mutually exclusive. Our own approach is non-Ham­
iltonian and exhibits only the first four properties. 

For applications, a sixth property, efficiency, 
should properly be considered. That is, an efficient 
approach should minimize the required computer 
time for a fixed standard of accuracy. This question 
has been studied extensively for Hamiltonian me­
chanics [13] as well as for shear flows far from 
equilibrium [II], comparing the relative accuracies 
of simple second-order integrators, more-complex 
higher-order multistep integrators, and the standard 
Runge-Kutta approach, all for a fixed number of 
force evaluations. Our own investigations of the 
equations discussed here lead to very similar conclu­
sions, so that we do not address this important 
question further here. 
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3. Kinetic moments method 

If control of the kinetic energy does not provide 
the complete canonical distribution. then at least 
some moments of the kinetic energy must necessar­
ily be in error [14]. This suggests controlling addi­
tional moments. For the harmonic oscillator, at unit 
temperature, 

(K) 1­
2 ' 

The additional moments can be controlled indepen­
dently, as described in Ref. [4] and Section 5.8 of 
Ref. [6]. For the first two moments, the correspond­
ing control-variable equations are 

The two friction coefficients {~, g} can have inde­
pendent relaxation times associated with them, as 
well as arbitrary weight functions, varying in time 
and space, without destroying the consistency with 
the canonical distribution. To explore the applicabil­
ity of the method, we consider in turn (i) a one-di­
mensional harmonic oscillator, (ii) a many-body 
equilibrium crystal, and (iii) a nonequilibrium 
many-body shear flow. 

3.1. One-dimensional oscillator 

Solutions for three versions of the oscillator equa­
tions are shown in Fig. 1. The three cases are: (i) the 
original "Nose-Hoover" oscillator, with ~ control 
of K; (ij) an oscillator with g control of K 2; (iii) an 

Fig. 1. 200000 (q, p) trajectory points from simulations made up of 20000000 fourth-order Runge-Kutta time steps of length 0.005. From 
left to right the trajectories were generated with <K) control, (K 2) control, and simu ltaneous <K) and <K 2) control. The initial condition 
for the upper row is. {q, p, " §} = {2, 2, 0, OJ, while that for the lower row is {O, 2, 0, O}.ln all cases, the relaxation times, 'Ti and T~, were 
equal to unity. 
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Fig. 2, Probability that the Hamiltonian, for a two-thennostat 
one-dimensional hannonic oscillator. is less than E, as a function 
of e - £. There are no statistically significant deviations from the 
straight line relation, also shown. characteristic of the canonical 
distribution. The oscillator mass, force constant, temperature, and 
relaxation times have all been set equal to unity. 

oscillator with simultaneous control of both K and 
K 2, The equations of motion for this last case (iii) 
are as follows, 

q=p, p=-q ~p gp3, 

t (p2-1)/T/, ~= (p4 3p2)/T/. 

Numerical evidence that these equations can provide 
effectively ergodic coverage of the oscillator phase 
space is quite strong. The zeroth and sixth moments 
are given correctly, within statistical fluctuations, for 
a variety of values of the characteristic times, T:; and 
7g• The phase-space distribution exhibits no obvious 
gaps when both moments are controlled. In Fig, 2 we 
show the cumulative energy distribution for the two­
thermostat case. There is no significant deviation 
from the canonical distribution. A study of the angu­
lar dependence in {q, p} space shows no statistically 
significant deviation from the expected circular sym­
metry. 

For the case that all system parameters are set 
equal to unity, our numerical evidence is based on 
several runs of. from 107 to 108 fourth-order 
Runge-Kutta time steps of 0.005 each, Larger time 
steps can lead to instability for runs of this length. Of 
course, any equations consistent with the canonical 
distribution must eventually lead to instability for a 
fixed time step, because the distribution- includes 
momenta that are arbitrarily large. Attempts to in-

elude also the sixth moment in the motion equations 
promptly lead to instability for much smaller 
timesteps. Evidently specifying two moments is suf­
ficient to provide good phase-space coverage. 

3.2. Many-body flows 

We investigated the same thermostatting ideas for 
two two-dimensional systems, a cold equilibrium 
crystal, at about l/40th the melting temperature, and 
a homogeneous far-from-equilibrium fluid shear 
flow, The extended Gibbs' distribution for # degrees 
of freedom contains multiplicative Gaussian distribu­
tions for the two friction coefficients, 

Both the equilibrium and nonequilibrium simulations 
behave well with either centered-difference or 
Runge-Kutta time steps of the usual size and with 
relaxation times, T:; and T~, corresponding to oscilla­
tion frequencies of the order of the Einstein fre­
quency [14]. WEinstein l/T, 

The equations of motion for the shear-flow prob­
lem have the form: 

X=Px+sy, Y Py. # 2N, 

Px F" SPy ~Px HK/Ko) PX' 

py = Fy - ~py - g ( K / K 0) pY , 

t= (I/T2)(K/Ko 1), 

§ (1/7 2)(K/Ko)(K/Ko 1-2/#). 

Provided that the initial center-of-mass velocity van­
ishes, these equations of motion preserve it un­
changed and at the same time reproduce the canoni­
cal-ensemble average values of the kinetic energy 
and its square, The resulting high-density high­
strain-rate shear viscosity was consistent with recent 
constant-energy simulations carried out by 'Hoover 
and Posch [15]. Three separate calculations, using ~ 
and g separately and together, all 106 timesteps in 
length, provided statistically indistinguishable vis­
cosities, 

\
,f 

{(, g, ~g} ={Ll4, 1.14, l.I5}. 

The stabilities and good agreement among these 
nonequiIibrium'simulations (the density, tempera­
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ture, and strain rate were all set equal to unity in the 
reduced units of Ref. [15]) show that it is possible to 
specify both the kinetic temperature, and its r.m.s. 
fluctuation, far from equilibrium, and that the consti­
tutive effects of these constraints are relatively small. 

4. Conclusions 

Noses mechanics, and some of its various non­
Hamiltonian generalizations, have proved useful in 
both equilibrium and nonequilibrium simulations, as 
described in the references. We believe that the 
present approach is the simplest of these. as it pro­
vides the complete canonical distribution for a har­
monic oscillator with two additive thermostatting 
forces. We have shown that this approach applies 
also to more usual many-body equilibrium and 
nonequilibrium problems, though simple temparature 
control is typically sufficient for these. 

The number of variables required to define a 
nonequilibrium state has been inconclusively dis­
cussed for decades. For instance. at physical bound­
aries either temperatures or heat fluxes can be speci­
fied. Energy and stress could be used rather than 
temperature, density, and strain rate. Again the only 
lasting criteria are Occam's. To us it seems desirable 
that solutions in the vicinity of boundaries be as 
smooth and free of discontinuities as is possible. For 
this purpose, feedback, which retains time correla­
tions and avoids trajectory discontinuities seems spe­
cially valuable. 

Evans and Holian [11] have shown that a wide 
variety of nonequilibrium thermostats leads to sensi­
bly identical behavior far from equilibrium, so that 
the details of the specified list of independent vari­
ables have an academic flavor. Nevertheless it is 
important to have numerical simulation methods, 
such as the kinetic moments method described here, 
which not only reproduce Gibbs' equilibrium statisti­
cal ensembles, but also can be extended to nonequi­
librium systems. The properties of time-reversibility 
and determinism are desirable too, both for the porta­
bility and reproducibility of simulations. as well as 

for the analytic cOIlllection between such simulations 
and the second law of thermodynamics [16]. 
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