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We construct especially simple families of piecewise-linear two-dimensional continuous maps. These
maps generate sets of points resembling continuous dynamical trajectories sampled at discrete times.
The generated sets of points share many properties with nonequilibrium many-body phase-space trajec-
tories. These characteristic properties include (i) time reversibility, (if) multifractal attractor-repellor
pairs, and (iii) ergodicity, without stable fixed points or holes.

PACS number(s): 05.70.Ln, 11.30.Er, 47.70.—n

I INTRODUCTION

Novel extensions of classical mechanics, which allow
for thermodynamic and hydrodynamic dissipation while
retaining time reversibility, have led to conceptual and
computational advances in understanding and simulating
a wide variety of nonequilibrium systems [1,2]. Dissipa-
tion is the inexorable conversion of work, or internal en-
ergy, to heat, as described by the second law of thermo-
dynamics. Time reversibility implies that a movie of any
developing system, projected backwards, still satisfies the
same motion equations (but with the velocities reversed).
Classical mechanics has been extended by incorporating
special time-reversible constraint forces. These serve as
sources or sinks of momentum and energy, and can also
be used to enforce either instantaneous or time-averaged
values of energy, temperature, stress, and the like for
specified degrees of freedom. The feedback forces impos-
ing these thermodynamic or hydrodynamic constraints
on a system, though “artificial,” provide the key to a
theoretical understanding of systems both close to and far

away from equilibrium.

AThe deterministic time-reversible nature of the under-
lying dynamical equations is firmly rooted in mechanics
3] This reversibility property makes it possible to ana-
Iyze the phase-space behavior of nonequilibrium steady
Sates and to correlate their time-averaged macroscopic
the.fm()dynamic irreversible entropy production with
their microscopic Lyapunov spectrum [4,5]. Entropy pro-
duction is a measure of the rate at which work, or poten-
lia] energy, is degraded to heat. The Lyapunov spectrum
of Lyapunov exponents {A] describes the time-averaged
orthogonal growths and decays, < {{e*'}] during a time
L of phase-space volume in the neighborhood of a typical
Phase-space trajectory.

. A sufficiently long trajectory in n-dimensional phase
Pace can be analyzed so as to determine all n of the

Yapunov exponents [1]. When at least one of these ex-
Ponents g positive, signifying exponentially “sensitive

Pendence on initial conditions,” the system is said to be

. Cheotic. For stability, the sum of al/ the exponents must

be negative or zero. In the dissipative case, which in-
cludes a!! nonequilibrium steady states, the sum of all the
Lyapunov exponents is negative, signifying the collapse
of the comoving phase-space volume onto (i) a fixed
point, (i) a limit cycle, or (iii) a strange attractor. The
last of these possibilities occurs in the Lyapunov-unstable
chaotic case. This case is the most interesting for physi-
cists, who generate attractors as limit sets of long trajec-
tories.

Chaotic attractors generated by time-reversible none-
quilibrium dynamics are truly strange. On the one hand,
they typically appear to be ergodic, with no holes [6],
meaning that the system eventually, and even repeatedly,
visits the neighborhood of every phase point in the n-
dimensional space consistent with the dynamical conser-
vation laws and any additional imposed constraints. The
“Hausdorff dimension” Dy is the dimension of the space
of the visited points.

On the other hand, the attractor points typically exhib-
it an “information dimension” I}; and a *correlation di-
mension” D, which are both strictly less than the con-
strained phase-space dimension: Dy > D; > D.. The in-
formation dimension characterizes the dependence of the
occupation probability « 801 of a typical phase-space hy-
percube, of sidelength &, as is detailed in Sec. III. The
correlation dimension describes the dependence of the
number of pairs of attractor points lying at a distance §
of one another, « SDC. The limit set generated by the dy-
namics of our map is called an “attractor” to reflect the
reduced dimensionality. All of the maps we study are,
like the more complex Poincaré sections derived for
physical systems, piecewise differentiable, in the sense
that the Jacobians of the maps vary continuously in
space. Though the combination of dissipation with ergo-
dicity seems paradoxical, both numerical and theoretical
investigations have established its reality.

Several mathematicians are making an effort to assimi-
late the paradoxical developments [7,8] by undertaking
rigorous analytic studies of the chaotic nature of the con-
tinuous time-reversible thermostatted equations of
motion. These workers have shown that many of the re-
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sults established by numerical work a decade ago are
rigorously true. There appears to a general consensus
that the ergodic attractor, for the simple Galton Board
problem described below, has an integral Hausdorff di-
mension and a smaller nonintegral information dimen-
sion, agreeing with the results of computer simulation [6].
Though the distinctions among the various fractal dimen-
sions (capacity, Hausdorfl, information, Kaplan-Yorke,
correlation, etc.) are sometimes confused in the literature,
there appears to be no real doubt that the two ap-
proaches, theoretical and numerical, are close to provid-
ing a common understanding of the irreversibility exhib-
ited by time-reversible systems.

With the present work we hope to make the nature of
irreversible physical systems clearer and more accessible
to mathematicians, as well as to physicists interested in
the fundamentals of simulation, by relating typical
features of the solutions of the differential motion equa-
tions to phase-space structures generated by continuous
maps. The idea of simplifying dynamical analyses by
forming such maps, projecting orbits onto a phase-space
hyperplane, a Poincare plane, is a century old. Even
though the complete Lyapunov spectra of many-

. dimensional multifractal objects can be analyzed numeri-
cally for systems of a few hundred degrees of freedom
[9,10], the simplification obtained by reducing the dimen-
stonality from a three-dimensional continuous flow to a
two-dimensional map remains real and important for an-
alytic work.

The aspects of nonequilibrium systems that we wish to
emphasize have previously been illustrated by the Galton
board example [1,4,6-8,11]. This system is arguably the
simplest known ergodic nonequilibrium system. It con-
sists of a single point particle, driven through an infinitely
periodic “triangular lattice” of hard-disk scatterers by a
constant accelerating field. The lattice of scatterers has
hexagonal symmetry, with each scattering disk having six
similar neighbors, located at the vertices of a regular hex-
agon. The overall density of the scattering-lattice must
be sufficiently dense to ensure collisions with the moving
particle. A stationary strange attractor results when a
time-reversible constraint force is used to keep the kinetic
energy of the driven particle fixed. In the absence of such
an energy constraint the moving particle cannot achieve
a stationary state.

The Galton board problem was first analyzed in terms
of (fairly complicated) maps [11-13]. It displays the
_three typical features many physicists associate with large
nonequilibrium systems:

(i) time-reversible equations of motion;

{ii) multifractal repellor —attractor pairs;.

(iii) ergodic phase-space structures with no stable fixed
points.

With time-reversible dynamics the phase-space repellor is
the time-reversed image of the strange attractor. The re-
pellor is a “source” of the flow in the same sense that the
attractor is a “sink.”” Both objects have a singular proba-
bility density, with the probability of occupying a small
region in phase space varying as a fractional power of the
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region’s size. When the probability power law addit,, © rporate
ly varies from point to point, the distribution is sajq ok ﬁl"’ble I
muc’u’ﬂ*acz‘al. Sl EY
An ergodic phase-space flow links all the repellor sta fry 0
(occupied in the distant past) to the geometrically gjp,: the ¢
attractor states {to be occupied in the distant fut ble, as
through trajectories that come arbitrarily close to g al ~ Thi
lowed phase-space points. Both time reversibility ang gstems int
existence of an attractor-repellor pair are quite Unusyy ~-y','nble muli
properties for maps [14]. It is our purpose to explore te ¥ gmilar, bu
degree to which all three of the properties above cay b § gathematic
realized in two-dimensional deterministic (one-top: § Galton boa:
time-reversible maps with simple structures, f < gaps of the
The well-known baker, Bernoulli, and Arnold cat mapy 4 rate att
are not rime reversible in the sense that we use these 3 mrelative
words, though mathematicians have broadened the § Thelasty
definition of reversibility to include at least the bakerapg § with to <
cat maps [14]. Also not reversible are the millions of | agodicity~
lynomial maps studied by Sprott [15—18]. ‘Our definitig § trarily clos
of reversibility is a relatively rare attribute of maps. Itp. § comoving |
quires two or more dimensions, is relatively difficult 1o - doxical. E
analyze, and has relatively rarely been discussed [14], w, § . cgnnot ince
begin by requiring that, like Einstein’s, Maxwel'yl toward a fr
Newton’s, and Schrédinger’s equations, time-reversitk § Iy impossit
mapping equations, implemented in going forward m % Mate point:
time, must be identical to those required to go backward § ministic tr.
in time along the same space trajectory. Thus neithero §¢ #8d must t.
the baker maps, with horizontal cuts and vertical ds § sipation.
placements or with vertical cuts and horizontal displace $ “TF*~ sk
ments, is time reversible. The details of both types o del 18,
baker map dynamics are outlined in Fig. 1. waps, mak
It should be noted that some prefer a definition of i+ §  feversible
versibility that allows combinations of reflections, inver- g ¢ombinatic
r results

sions, or rotation in the phase space, called involutiony’
in comparing the forward and backward evolutions of &’
system. For details see Ref, [14]. ]

Real nonequilibrium systems involve dissipation, the ¥ .
reversible conversion of work, or internal energy, 128
-heat. Theoretical models for dissipative systems usuall:

e R BT
™=

FIG. 1. The operations TMTM, applied to either of (%9
sions of the baker map, are equivalent to two forward 1t¢
of the corresponding map. Two more iterations of th#!
“backward” in time, would just continue the process of ¢
The inverses of these baker maps differ from the m;?ps
selves, so that these maps are not time-reversible. Notict
the top “horizontal-cut™ baker map, the bottom haif,
square becomes the right half after mapping M 1s appt®
the lower “vertical-cut” baker map (which is the invers® »
the top map), the right half of the square becomes the 9

half. In either case the time-reversal operation T corr
to a reflection about the horizontal midplane.
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orate frictional forces, which cause a shrinkage of
; iable phase-space states as times goes on. The
. _ed harmonic oscillator, which approaches the fixed
It)( q=0,p ==()}, is the most familiar example.
n {he continuous case, time-reversible dissipation is
1 _ble, as the Galton board example [6-8,11,19] estab-
”fwss&& This example is prototypical of nonequilibrium
“ishtems in that the phase-space flow links together an un-
?‘pble multifractal repellor source to a geometrically
- gmilar, but stable, strange attractor sink. It was the
n,;hematical complexity of the solution process for the

_Galton board example that led us to consider the simpler
- maps of the present work. We show here that these maps
enerate attractor-repellor pairs, just as do their continu-
ous relatives.

The last generic property of nonequilibrium systems we
‘wish to discuss is the simultaneous presence of
ergodicity —the periodic visiting of all phase points, arbi-
wrarily closely—and dissipation—the shrinking of the
somoving phase volume. This combination seems para-
b goxical. Ergodicity strongly suggests that the dynamics

lefinition .
ps. Itre
ifficult to -

14). we' annot incorporate the shrinkage necessary to progress
faxwenv,’:_" wward a fractal object. In fact, such progress is obvious-
reversible ly impossible in a discrete space with a finite number of
rward i g Mate points. In such a discrete case, any ergodic deter-
vackward - ministic trajectory must necessarily be periodic in time,
1either of and must therefore lack the shrinking associated with dis-
‘tica? sipation. '

disp. This short paper is arranged as follows: some
types of definitions, together with discussion, of time-reversible

maps, make up Sec. II; a realistic demonstration of time-
reversible dissipation, based on simple time-reversible
combination maps, follows in Sec. III; finally, we discuss
%ar results and conclusions in Sec. IV.

II. TIME-REVERSIBLE
TWO-DIMENSIONAL MAPS

W}i consider here two-dimensional piecewise-
foatinuous maps {M], which generate new coordinates r’
R oold ones, r'=r'(r)=M(r). For simplicity and con-
seuience, both r and its mapped image 1’ are restricted to
*ithin 4 periodic unit square centered on the origin:

“05<x —x'<+0.5, —0.5<y—yp <+0.5.

We :hmg of the Cartesian components of r=(x,y) as
- VSenting a coordinate x and a momentum y (with the
o UM changing sign, -+y — —, in a time-reversed
, ﬁwxom. Thus our Cartesian space is a caricature of clas-
’ Phase space and our maps are caricatures of equa-
r 9f motion,

:demly a single-valued deterministic map M operat-
.90 {X,p) produces a new pair of coordinates (x',y'),
& &s;ﬁ?in be viewed as representing the next point along
imeme-d}fference phase-space trajectory or elge th(;:

ISection of such a trajectory with a Poincaré
pai ?e inverse of M, denoted M}, would produce
time ':’}’J from the pair (x',y"). To define and dis-
: o eversibility, we need alsq to define separately a

€sal map T. T does nothing more than change
of the momentumlike coordinate y: +y— —y.

half 0 : Sz
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T is thus its own inverse: TT !=TT=I, where I is the
identity map.

The concept of time reversibility [1,2,7,14], in the re-
stricted use we apply throughout this paper, can now be
expressed in terms of the one-to-one maps M and T and
the phase-space coordinate-momentum pairs {x,y). 4
map M is said to be time reversible if and only if it satisfies
the identity

{x,y)=TMTM(x,y) . n

The maps are applied from right to left in this definition,
first M, then T, then M again, and finally T again. The
first of two occurrences of the time-reversal map corre-
sponds to a first time reversal at (x',y "), giving (x', —y’).
The second reversal occurs after the map M returns the
trajectory from (x’,—y') to (x,—y). From this
definition, it follows also that the inverse of M, ML is
given by another time-symmetric map -

M I=TMT .

Figure 2 illustrates the basic cycle of four operations in
{1] for the two-dimensional map corresponding to the
phase-space dynamics of a one-dimensional harmonic os-
cillator of unit frequency. The map M, which advances
the coordinate-momentum pair forward in time (clock-
wise in phase space) by At, is the transpose of a {counter-
clockwise) rotation matrix:

+sinAt
+cosAt

+cosAt
—sinAf

The defining equation (1) is conceptually complicated,
and therefore of littlé use, in the direct construction of
time-reversible maps. It does provide a useful method for

k

: |

T

: ; q
T

~

FIG. 2. The operations TMTM, applied to a one-
dimensional oscillator, initially located at the open-circle point
(g,p)=(—58,+8&). The motion map M advances the oscillator
“trajectory” through a quarter period to the new point
{+8,+8). Then, the time-reversal map T reverses the momen-
tum from +& to — &, with no coordinate change. A second ap-
plication of the motion map carries the point (+8, —&) to (=38,
~§), where a final time-reversal of the momentum regencrates
the initial state.
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checking solutions. Intuition, though slow, proved to be
the most effective tool in finding interesting solutions of
the equation. In retrospect, it is possible to motivate the
generation of the solutions found in this way. Such a
constructive approach begins by considering the simplest
{(homogeneous) transformations of two-dimensional space
into itself and checking these for time reversibility, in the
sense incorporating the T map equation (1) above. Con-
sider the simplest useful examples, taken from the two
macroscopic hydrodynamic shear flows:

Uy =Ly, u,TEX .

In these flows u is velocity and & is the strain rate. In
converting these hydrodynamic flows to Cartesian maps,
we use periodic boundaries to confine the displaced vari-
ables to the unit square.

The first of these area-preserving finite-shear examples
we call X,

Xix—x'=x+egy , yp—p =yp,

including, if necessary, the addition or subtraction of 1.0
to the new coordinate x' to ensure that its position lies
within the unit square. This map is clearly linear and
time reversible, as is illustrated in Fig. 3. The simple
shear transformation by itself is certainly far from being
either ergodic or mixing because the y coordinate never
changes. On the other hand, a symmetric combination of
two linear maps, using the corresponding vertical dis-
placements from Y,

Y:x—x'=x, y—p =p+ex,

can be used to make the time-reversible combination de-
formation XYX. By contrast, the Arncld cat map, XY,
with £=1, is not time reversible. In the absence of
periodic boundaries XYX carries the unit square into a
long, thin parallelogram. Because the motion expands in
the direction of the longer diagonal of the parallelogram
and contracts in the perpendicular direction, the result is
a linear hyperbolic map [12]. Unless peculiar zero-
measure initial conditions are chosen, this map is ergodic
and mixing.

Given that both X and Y are reversible maps, the time
reversibility of the symmetric combinations XYX and

o]
]
=1
=

L « L 1] Lo

FIG. 3. The three time-reversible transformations, carried
forward and backward in time for two iterations, of the corre-
sponding maps (X, Y, P). Compare with the Galton board maps
llustrated on p. 281 of Ref. [1].
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YXY, according to (1),
inverse property of T:

TXYXTXYX=TXYT 'YX=TXYTYX=TXT -1

follows easily from the < s

X
=TXTX x5

Thus, unlike either of the asymmetric map combinati%‘
XY or YX, the compound maps XYX or YXY gz,
only time reversible but also, like the cat map, ergodg .
{for nearly all initial conditions), due to the loss of cohey.
ence in both the horizontal and vertical directions. Ty,
compound maps do, however, provide no possibility foe
phase-space density change and so are not at alj Ch;xra;.
teristic of the microscopic dynamic motion equationg

To provide this possibility, we define and use anothe
transformation P, which is also illustrated in Fig. 3. p
corresponds to the simultaneous proportional reflectioy
of both the x and y coordinates in mirrors located at ~p, &
An x coordinate lying between 0 and a reflecting mirrg
at 4, for example, provide a new coordinate x' betweer
and 1, while a coordinate between 1 and 1 is mapped 1
the interval between 0 and % For positive x, and a mi.
ror at 0<m <4, the mapping P: x4 <>X iy, Which is its
own inverse, links together two x coordinates according
to a simple linear relation:

(X pigne =M X =m}=(2m—1)/2m .

Negative x, as well as the y coordinates, are treated simi- |
larly by P. For choices of m other than the ares
preserving value of 1, this map contains both expanding

and contracting regions and so has the potential to pro- second
duce a multifractal attractor-repellor pair. attracte
The combination XPYPX turns out to be time revers proach
ble, mixing, and to have no stable fixed points. Strong sions, v

" empirical evidence for ergodicity can easily be obtained quare
by iterating this map, using a fast computer and noting our may
the independence of the statistical results obtained to the pearto
chosen initial point. The {(x,y)} pairs so generated ca2 provide
be used to compute both (i) the occupation probabilities tion, ve;

within a network of small squares and (ii} all of the varr

end:
ﬁ"‘mguis

&[ €nseq

FIG. 4. 100000 points generated by iterating fhf
XPYPX, where m‘ﬁ-“%, starting at the (arbitrary) {x.¥ of
{0.3,0.4). The information dimension of this ergodic attrac

1.94.
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the s fractal ‘dime.nsions [6,‘12,13]. See Fig. 4 for the result
. o 100 000 iterations of this map with m =1{. Many other
) wmbinatii)n maps, formed from time-symmetric se-
XT“X; sences of the {X,Y,P} operations, have these same
XTX=q. roperties, as wopld addxtlonfil maps'contalmng other
b smple t;me-revetrmble geometric operations, such as rota-
1‘oinatim,'s ions and reflections.
Y are py The small catalog of simple maps discussed s0 far
>, ergodie {X,Y,P(m)} turns out to be fully sufficient to replicate
- of cohey. 4l the qualitative behavior found in the time-reversible,
nS. These put dissipative, systems studied with nonequilibrium
1ibility for molecular dynamics [1,2,4-11]. We consider in more de-
A1 charag ail some simple specific examples in the following sec-
itions, tioft
ie another :
Fig. 3. p III. CONSTRUCTING TIME-REVERSIBLE
reflection § . DISSIPATIVE MAPS
=d at +m, )
ng mirror Neither the homogeneqt}s linear shear maps X and Y
between ! qor the inhomogeneous bilinear P(m) maps are by them-
nappedu}: selves gapable of_ 're;‘)resengting t'he dissipative systems
wnd 2 mir. treated in nonequilibrium simulations. Maps representa-
. tive of realistic systems have to combine the shear exhib-
‘hich xs.ns ited by X and Y with the expansion and contraction in-
according herent in P. In dynamical systems, it is heat exchange,
through boundary energy or temperature constraints,
that causes the comoving phase-space volume to expand
or contract, with the generic consequence that
sated attraction——onto a “strange attractor”—eventually wins
the area- out {1,2,4-6]. It is characteristic of nonequilibrium simu-
expanding b Lations that close to equilibrium, where the dissipation is
ial to pro- second order in the magnitude of the deviation, the
attractor’s information and correlation dimensions ap-
ne reverst- proach close to the Hausdorff and embedding dimen-
ts. Strong sions, with the dimensionality difference varying as the
¢ obtained suare of the deviation from equilibrium [{6~8,19]. For
ind noting our maps the embedding and Hausdorff dimensions ap-
ned to the pear to be exactly the same. Most known maps, however,
erated can provide fractal dimensions, both Hausdorff and informa-
cobabilities § 9on, very far from the embedding dimension [12—18].
»f the var Apart from a fixed point at the origin, the linear shear
maps considered in Sec. II can easily provide an ergodic
“Overage of the unit square. The special case XYYX,
“ith unit strains
X:(x'=x+y;p'=yp), Y:(x'=x;p'=x+y),
"parently provides uniform coverage of the unit square.
%t Fig. 5. Though this figure, as well as Figs. 4 and 6,
S generated by iterating a single initial condition for-
*ad in time, we carefully verified that, apart from isolat-
= Unstable periodic orbits, the results are statistically (i)
@?Peﬁdent of the chosen initial point and further (ii) in-
“Unguishable from limit sets generated by iterating ini-
2 ensembles of thousands of randomly chosen, or or-

F Ted, points.

-o.'any combinations of the three maps so far con-
tred | X,Y,P(m)] apparently have all the properties
. “3{11 of nonequilibrium dynamical systems. Such com-
- 2lons can be generated and evaluated on a modern
d °rk§tation, in a way pioneered by Sprott [15-17], by
blning thousands of symmetrized sequences of such

.o the ™

o4 ) A :
(.‘Cg}’ o
. attractof 8.
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FIG. 5. 100000 points generated by iterating the map
XYYX, starting at the {arbitrary) (x,y) point (0.3, 0.4} and us-
ing unit strain, €=1. The information dimension of the map is
2.00. YXXY produces a similar map.

maps and then generating a few tens of thousands of
points for each such map, selecting those with interesting
properties for subsequent visual display and evaluation.
Reasonably long time-reversible sequences, composed of
time-reversible maps, such as

M, M,M;M M;M,M,

can be used, where the sets of all such participating
time-reversible maps {M;,M,,M;,M,} can be chosen ex-
haustively.

Consider the dissipative collapse of phase-space proba-
bility to a “multifractal” attractor. Such behavior has
been shown to characterize the Galton board [1,6-8,11]
and many other nonequilibrium systems [1,2], and is by
now expected to be generic for many-body systems of in-
terest in nonequilibrium statistical mechanics. The col-
lapse onto a multifractal phase-space attractor sink (while
simultaneously fleeing from a congruently similar repellor

FIG. 6. Point distributions generated by iterating the map
XYPYX, where the values of the information dimension D,
ranging downward from 1.99 to 1.14, are indicated on the distri-
butions. The corresponding Am values are 0.01, 0.05, 1/12,
0.10, 0.15, and 0.17.
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source} can occur if the dynamic probability redistribu-
tion is sufficiently nonlinear. In a multifractal attractor
the power-law dependence of the phase-space measure y
on the grid spacing § used to measure it varies from point
to point.

We can check for the characteristic multifractal char-
acter of nonequilibrium probability densities by simul-
taneously measuring the Hausdorff, information, and
correlation dimensions Dy, Dy, and D.. These generally
differ {6,7,12,13]. The information dimension [12,13] de-
scribes the way in which the phase-space measure
diverges as the grid spacing § used to determine the mea-
sure approaches zero:

(Inp)s= SN, /N)In(N, /N)=D;Ind
FO()+ -

This definition coincides with the intuitive notion of di-
mension if one imagines the uniform case in which all the
N, have the average value, N, =N, for the unit square.
Accurate estimates for Dy, Dy, and D require that the
mean value of the cell occupation numbers greatly
exceeds unity.

We noted first that XYYX and YXXY are useful
maps for generating the homogeneous ergodic density
analogous to equilibrium. Iterated 100000 times, these
combination maps typically provide estimates for D; ly-
ing within 0.01 of 2.00 if 32° or 642 cells are used. Add-
ing the nonlinear P(#m) map provides a family of strange
attractors, of which typical representatives are shown in
Fig. 6. The corresponding repeliors are the time-reversed
images of these attractors. The maps have information
dimensions that decrease quadratically from 2 as m is in-
"creased or decreased away from the equilibrium value,
m =431, Figure 7 presents convincing evidence for this
functional form, and indicates as well a transition region
in the vicinity of Am =0.25—m =0.15. For Am >0.17

2.0 ':j
D | j
' ]
1.5 ¢ _;]
: ]
5 ]
A . j
1.0 Lo
0.0 0.1 0.2

Am

FIG. 7. Dependence of the information dimension D; on
Am, the offset of m from the equilibrium value m =11 The
smooth guadratic portion of the curve corresponds to the er-
godic attractors of Fig. 6. In this region the XYPYX map has
eight unstable fixed points. For larger values of Am=0.25—m
than are shown here, the corresponding maps give limit cycles.
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Y

the ergodic phase-space distribution becomes replaceq . K

limit cycles analogous to those found in high-field Ggj
board dynamics. ;

Thus, by combining homogeneous linear shears y;,
an inhomogeneous time-reversible and dissipative {locafy
non-area-conserving) map, we have succeeded in Simuly,.
ing all the properties of a typical nonequilibrium SYsten
It is reasonable to expect that the mathematical theory o
these piecewise-linear time-reversible maps is more ap;,,
able to analysis than are the original nonlinear differeny;,
equations of nonequilibrium molecular dynamics,

O

IV, CONCLUSIONS

The main product of our exploratory investigations j
the simple set of linear time-reversible maps {X,Y,p:,
which can be combined to give rise to the same generi
behavior observed in solving the differential motion equa-
tions of nonequilibrium molecular dynamics. Figures ¢
and 7 show that we have reached our goal of producing »
simple combination map with the same topological prop-
erties as the relatively complicated map characterizing
the Galton board.

Because the underlying hard-disk dynamics in the Gal-
ton board is impuisive, the corresponding phase-space
motion contains bifurcations, in which nearby trajec
tories separate discontinuously, For this reason the
smooth “Smale horseshoe” deformation, resulting from
the stretching and bending associated with continuous
forces, is absent here. Such a bending deformation can be
described by a quadratic map [12,13]. We expect tha
time-reversible quadratic maps could also be constructed.
The simplest way would be to extend the linear deforma
tions used here (corresponding to the isoperimetric
Lagrange-polynomial mappings of continuum mechanics'
so as to describe quadratic deformations within contigs-
ous hexagonal regions. The six coefficients in the corr®
sponding quadratic forms [@ +bx +cy +dx*+exy ¥’
can be fitted to six conditions at the hexagon vertices.

The dissipation (contraction to a multifractal attractor
found here, as well as in time-reversible many-body s§¢
tems, appears at first to be as paradoxical as Boltzmann ¢
H theorem derivation of macroscopic irreversibk
behavior from microscopic reversible motion equation®
It certainly is odd that time-reversible ergodic equatio™
of motion can simultaneously provide the shrinking ©
phase-space volume typical of dissipation, along with
ergodic development that repeatedly visits all regions of #
continuous space. This paradoxical behavior may ¥¢
reflect the mysterious paradoxes [20] that are inherent ¥
the concept of a continuum.

The simple. time-reversible maps found here pafaﬁld
equilibrium and nonequilibrium molecular dynami®®
Now that a rigorous understanding of the Simpl’3§l
dynamical models is available, the new reversible er god!
maps should provide a simpler, mathematically moft

tractable link between the two fields. The paradﬂxiaﬂ i
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TABLE L Fully converged Lyapunov exponents and the cor-

s ondin Kaplan-Yorke dimensions.
respondne ;
Am A Ay Dyy
0.00 1.763 —1.763 2.000
0.0l 1.761 —1.768 1.996
0.05 1.717 —1.881 1.913
1/12 1.614 —2.082 1.775
0.10 1.523 -2.210 1.689
0.15 1.155 —2.611 1.442
OJZ,..H 0.534 —3.161 1.169

finding that continuum phase spaces can simultaneously
support dissipation and ergodicity has here been extend-
ed, computationally, to time-reversible maps, which
should provide a simpler interpretation of this fundamen-
tal property of nonequilibrium systems. We expect that
these new models, and their variants, will prove useful to
a variety of projects devoted to the understanding of ir-
reversibility.

In obtaining these results, progress would have been
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much slower without a fast gtaphics workstation. One
can only wonder what the reactions of Poincaré and of
Boltzmann to the new possibilities of graphic displays
would be.

More elaborate calculations than those in the text
{with billions of points and millions of bins) were carrried
out, but failed to reduce the uncertainties in the informa-
tion dimensions given in Fig. 6 below about 0.01. Fully
converged Lyapunov exponents, and the corresponding
Kaplan-Yorke dimensions, appear in Table. L.
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