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Abstract: Recent developments in molecular dynamics furnish new interconnections among three 
classical fields: particle mechanics, continuum mechanics, and thermodynamics. The resulting 
links clarify the importance of Lyapunov instability to irreversibility. 
PACS Numbers: 03.20.+i 05.60.+w 46.10.+z 

1. INTRODUCTION 

The paradoxical coexistence of time-reversible mechanics with the second-law in­
equalities of thermodynamics has troubled physicists for more than 100 years. These two 
approaches to understanding, the one theoretical and the other experimental in outlook, 
were joined by a third route to knowledge, computer simulation, at the time of the Se­
cond World War. Recent extensions of the computational approach, born ofa desire to 
simulate nonequilibrium processes, can be analyzed from Gibbs' phase-space point of 
view. This approach leads quite naturally to a microscopic mechanical analog of the 
macroscopic Clausius' Inequality [1, 2]: 

fQIT<O. 

This macroscopic inequality summarizes the thermodynamic observation that cyclic 
processes"generate heat. The microscopic mechanical analog of this inequality, 

(dln®ldt) < 0, 

reflects the same observation, but with the rate of heat generation replaced by the relative 
expansion rate of the phase-space hypervolume 0. In the microscopic case the need for 
time averaging is indicated explicitly by the angle brackets < > . 

A recent particle approach to macroscopic simulation, smooth particle applied 
mechanics [3,4], has revealed new links between the reversibility paradox which sepa­
rates classical mechanics from thermodynamics, and promises assistance in under­
standing the irreversibility inherent in turbulent flows. Here we discuss the concepts of 
temperature, heat transfer, Lyapunov instability, and turbulence, in order to enhance the 
understanding of the connections among them. 

2. TEMPERATURE, THERMOSTATS, AND HEAT TRANSFER 

Temperature requires a thermometer, as is emphasized by Muschik's term, "contact 
temperature", though the zeroth law of thermodynamics makes it plain that the exact 
nature of the thermometer is unimportant at equilibrium. Away from equilibrium, using 
simplicity as a guide, it is natural to use an ideal gas of light particles, capable of un­
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correlated impulsive collisions, to define local temperature. Such an ideal-gas thermo­
meter, through impulsive collisions, measures the kinetic energy of the degrees of free­
dom with which it interacts. The resulting definition of ideal-gas temperature follows 
from kinetic theory. For a single Cartesian degree of freedom . 

kT == (mi 2) • 

The arbitrariness of such a choice can be seen by considering the fact that two general 
nonequilibrium systems, with different nonequilibrium velocity distributions, but sharing 
a common value of the kinetic temperature T, would typically exchange energy between 
themselves, if they were able to interact impulsively, while neither nonequilibrium sys­
tem would have a net energy exchange with an idealized ideal-gas thermometer set at 
their common kinetic temperature T. 

The kinetic-theory definition of an ideal-gas thermometer is one of the classical ap­
proaches to thermodynamics, and is not only the simplest, but also the one most closely 
tied to computer simulation. The kinetic-theory definition of temperature can be embed­
ded into the framework of classical mechanics through the use ofHamilton's Principle 
of Least Action [5]. That Principle requires that particle trajectories minimize the action 
integral while simultaneously satisfying all externally-imposed constraints. A thermal 
constraint requires that the kinetic energy ofany thermostatted set ofdegrees of freedom 
remains constant. Such a phase-space constraint reduces, by one, the number of degrees 
of freedom describing the system, and results in a new thermostatted equation of motion 
for the constrained coordinates: 

mf = F(r) - smf. (1) 

The time-reversible "friction coefficient" ( which follows from Hamilton's Principle is 
equal to the rate at which heat is extracted to satisfy the constraint, divided by twice the 
kinetic energy K of the constrained degrees of freedom: 

SHAMILTON - QI2K . 

Thus ( corresponds to the rate at which entropy is absorbed by a reservoir modeled by 
the constraint. It was only recently discovered that this correspondence follows directly 
from Hamilton's Principle. Exactly the same equation of motion (1) follows also from the 
simple expedient of velocity rescaling or from the more-elegant, but equivalent, appli­
cation of Gauss' Principle of Least Constraint to the problem of thermos tatting mecha­
nical motions [6, 7]. 

An alternative route to incorporating temperature into mechanics was discovered by 
Nose [8]. He too found exactly the same equation ofmotion as follows from Hamilton's 
Principle, but with a somewhat different reversible friction coefficient: 

SNOSE-HOOVER = f(2dKI kT)h:2 dt . 

Here kT is twice the eqUilibrium equipartition kinetic energy of a thermostatted degree 
of freedom and l!:.K is the instantaneous deviation of the total kinetic energy from the 
average value. 't is an arbitrary relaxation time, which in practice is best chosen such that 
the timescale of the energy fluctuations corresponds to the time between collisions for 
a typical thermostatted particle. In the eqUilibrium case (N-H has a Gaussian distribution, 
increasing the number of phase-space coordinates by one. The additional variable is the 
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Nose-Hoover friction coefficient (N-H' Nose chose (N-H so as to reproduce Gibbs' equi­
librium canonical distribution for the phase-space variables {q,p}. I have championed the 
particular version of his mechanics, "Nose-Hoover mechanics", which avoids "time­
scaling" of the constrained motions. 

The half-width of the probability distribution for the friction coefficient ( is propor­
tional to 111;. In the limit that l' approaches zero, Nose's mechanics reproduces the same 
constrained dynamics which follows from Hamilton's Principle of Least Action. There 
is so far no derivation of Nose-Hoover friction based on a variational principle. 

These thermostatting forces, with either Hamiltonian or Nose-Hoover friction coeffi­
cients, have been employed in a variety of simulations, both at, and away from, equili­
brium. They made it possible to use temperature as an independent variable in computer 
simulations of small and large systems. Generalizations have also been used to control 
the internal energy as well as nonequilibrium fluxes. It should be emphasized that the 
time-reversibility of mechanics is retained under the influence of thermostatting. Both 
formulations just mentioned are fully time-reversible, with the friction coefficient chang­
ing sign in the reversed motion. 

3. LYAPUNOV INSTABILITY IN MANY-BODY SYSTEMS [6, 7, 9] 

The exponential increase of small perturbations {oq, op} in the initial conditions, 

o(t)/0(0) ~ expO"1 t) , 

is a common feature of solutions of the many-body problem. This increase, which leads 
fonnally to divergence at long times, is quantified, and generalized, through the Lya­
punov exponents, both the "local" instantaneous exponents {J...(t)} and the "global" time­
a~eraged exponents {(J...(t»)} =. {J...}, which describe the comoving and corotating defor­
mations of a phase-space hypersphere governed by deterministic equations of motion. 
Both of the thermal generalizations of mechanics outlined in Section 2 provide the same 
link between the Lyapunov spectrum, the friction coefficient, or coefficients, and the re­
sulting heat transferred by the reversible friction forces: 

L A(t) L ~ := L (Q I kT) . 

Here the complete Lyapunov spectrum is summed up, over all degrees of freedom, 
including the additional degree of freedom (N-H in the Nose-Hoover case. The friction 
coefficient and heat-transfer sums include only those degrees of freedom affected by the 
reversible friction forces, together with the temperatures of the reservoirs to which they 
are coupled. In the usual case the time-rate-of-change of Q is negative, corresponding 
to heat flow from the system to the surroundings: 

L A(t) L ~ L (QlkT) < o. 
The key step in establishing this result is the phase-space flow equation, the analog 

of Liouville's Theorem: 

dlnf/dt:= L ~:= -dln®ldt, 

a local identity which follows directly from the thermostatted equations of motion. 
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4. CLAUSIUS' INEQUALITY AND LYAPUNOV INSTABILITY 

This relationship between the Lyapunov exponents and the heat transfer shows that 
no process which absorbs an infinite amount of heat can take place in a bounded region 
of phase space. Likewise, any process which gives off an infinite amount of heat must 
occupy a vanishingly small region of phase space. Evidently any cyclic process which 
absorbs or generates heat must, when repeated, lead either to unbounded or to vanishing 
phase-space hypervolume. 

Thus the requirement that averages over the phase-space distribution be bounded 
excludes cyclic processes which absorb heat, in accord with Clausius' inequality, and 
allows only those processes which correspond to a vanishing region of the equilibrium 
phase space. Extensive numerical work has established that the allowed phase space 
regions are multi fractal strange attractors, with an information dimension strictly less 
than that of the equilibrium phase-space distribution, corresponding to local Lyapunov 
spectra {ACt)} whose time-averaged global sums are strictly negative: 

Thus the ideal-gas definition of temperature, coupled with thermostats based on 
Hamilton's principle or Gibbs' distribution, makes possible the analysis of processes in­
volving heat transfer, and an explanation of thermodynamic irreversibility in terms of the 
dynamic Lyapunov instability of the microscopic motion equations. This point of view 
provides no support for the notion ofa nonequilibrium entropy and suggests instead that 
entropy is a useful concept only at equilibrium. The loss of the entropy concept away 
from eqUilibrium is not a serious one, as Onsager's symmetry results can be equally well 
obtained from Green and Kubo's nonentropic approach. The multifractal nature of the 
nonequilibrium phase-space distributions which result from the use of thermostats give 
Gibbs' entropies of -00, corresponding to the extremely low probability of randomly en­
countering a typical nonequilibrium state. Such typical nonequilibrium states have a past 
history which is not at all typical of equilibrium systems. 

This thermomechanical explanation of irreversible behavior is more general than 
Boltzmann's, for it is not restricted to gases, and it is also more general than Green and 
Kubo's, because it is not restricted to linear deviations from equilibrium. It shows that the 
dynamical instability associated with the many-body problem requires Clausius' ine­
quality. Otherwise, thermal instability would cause thermomechanical phase-space avera­
ges to diverge. 

5. CONTINUUM MECHANICS SIMULATIONS USING SMOOTH PARTICLES 

A new approach to computational continuum mechanics was originated by Lucy and 
Monaghan in 1977 [3]. Their idea uses "smooth particles" to describe the time develop­
ment of the continuum field variables. This new version of continuum mechanics asso­
ciates individual velocities and energies with each particle but calculates the field varia­
bles at any point in space, r, by superposing the contributions ofall particles within range 
of the smoothing function wCr) 

22 




The smoothing function w is generally chosen to have continuous first and second deri­
vatives and a finite range, over which its integral is unity. The equation of motion asso­
ciated with smooth particle applied mechanics includes the stress tensors and densities 
of all pairs of particles close enough to interact: 

mr~ =L m2[(a/p2)j + (a/p2)j] . Vjwij' 

The stress tensors and densities at particles i and j are to be calculated by summing up 
the contributions from all nearby particles, just as was done in the example calculation 
of the velocity (v) above. 

The special case appropriate to a two-dimensional ideal-gas isentrope, 

reduces exactly to Newton's equations of motion with the smooth particle weight func­
tion playing the role of a pair potential. This similarity suggests that the evolution of a 
continuum shares the Lyapunov instability that characterizes atomistic flows. It suggests 
also that efforts to describe the interaction of eddies in turbulent flow are equivalent to 
the description of the coupling ofvelocity fluctuations in a correspondingly driven ato­
mistic flow. Ongoing work, carried out with Oyeon Kum, Harald Posch, and Carol 
Hoover, should shed light on this second link between microscopic mechanics and 
macroscopic nonequilibrium processes. 
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