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Temperature maxima in stable two-dimensional shock waves 
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We use molecular dynamics to study the structure of moderately strong shock waves in dense two­
dimensional fluids, using Lucy's pair potential. The stationary profiles show relatively broad temperature 
maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith's model for 
strong shock waves in dilute three-dimensional gases. [S 1063-65IX(97)01507-9] 

PACS number(s); 51.10.+y, 02.70.Ns, 52.35.Tc 

I. INTRODUCTION 

Smooth-particle applied mechanics is a particle method 
for solving the partial differential equations of continuum 
mechanics [1-3]. The moving particles have localized 
spheres of influence, characterized by weighting functions 
{w(r)}, centered on the particles. The particle motion is gov­
erned by ordinary differential equations and so resembles 
molecular dynamics [4]. In the special case of a two­
dimensional ideal gas, the smooth-particle equations are ac­
tually isomorphic to those of molecular dynamics [4], with 
the smooth-particle weighting function w playing the role of 
a pair potential. 

Recent studies of this isomorphism emphasized the trans­
port coefficients of an ideal smooth-particle fluid [5-7]. Par­
ticles of finite size have finite transport coefficients, causing 
a number dependence in particulate continuum simulations. 
This dependence on particle number is analogous to the in­
terpolation errors that occur when a continuum is described 
by a coarse grid of points. The viscosity and heat conductiv­
ity of smooth particles can be understood fairly well by ap­
plying Enskog's kinetic theory of transport [8,9]. 

Here we simulate a strongly nonlinear inhomogeneous 
flow: a stationary planar fluid shock wave in two space di­
mensions. We investigate three main points: (i) stability of 
the planar shock wave structure in two dimensions; (ii) con­
sistency of the shock wave profiles with the known transport 
cOyfficients; and (iii) anisotropicity of the temperature tensor 
Tij. Previous fluid studies have been devoted to these issues 
in three space dimensions [10,11]' Recent work has sug­
gested that the longitudinal temperature Txx is more relevant 
to shock wave transport than the mean temperature Tis [11]. 
The results we find in two dimensions suggest that Mott­
Smith's picture [12] of a shock wave as an intimate mixture 
of hot and cold particles is an apt description for dense fluids 
with weak repulsive potentials. In the following sections, we 
describe our simulation technique, give some sample results, 
and record our conclusions. 

II. SHOCK WAVE SIMULATIONS 

USING LUCY'S POTENTIAL 


Lucy's weight function [2], used here as a pair potential, 
has two continuous derivatives and a finite range h: 

w Lucy(r) = (5/7Th 2 
)[ 1+ 3(rlh)][ 1- (rlh) ]3; r<h. 

The constitutive properties for this potential are known fairly 
well. Hoover and Hess provided an accurate Griineisen de­
scription for its equation of state [7]. They pointed out that 
the shear viscosity 7J and heat conductivity K can be usefully 
approximated by their low-density forms: 

For the relatively low kinetic "temperatures," (mu 2)/2k, 
and relatively high densities, NIVph- 2 , considered in the 
present work, the combination (h 2kT) is of order unity, so 
that the transport properties are dominated by collective ef­
fects of order T5/2h 3 . 

We first studied shock wave propagation in the two­
dimensional Lucy fluid by implementing a two-dimensional 
analog of the algorithm discussed in Ref. [10]. There, two 
similar samples of cold fluid collide symmetrically, with ve­
locities equal to the "piston velocity" ± up, launching twin 
shock waves at the collision plane, which propagate into the 
cold fluid with the' 'shock velocity" ± us' For twofold com­
pression of a relatively cold gas, the shocked material was so 
slow in reaching thermal equilibrium that system lengths of 
several hundred particle diameters were inadequate for con­
vergence to a stationary profile. 

FIG. 1. Snapshot of the 12960-particle shock wave simulation 
described in the text. Particles enter at the left and leave at the right. 
Fourth-order Runge-Kutta integration of the motion equations with 
a timestep of 0.025 is used. 
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FIG. 2. Number density, temperature (the longitudinal and transverse components are labeled), and pressure-tensor components are shown for the strong shock wave described in the text. 
The profiles are averages over the time required to replace all particles in the system 3.6 times. The abscissa is measured in units of the square root of the area per particle in the unshocked fluid. 
This same distance, (VolN) 112, corresponds to the bin width u sed in calculating averages, follow ing Hardy's approach. Compare the profiles shown here to the three-dimensional profiles shown 
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We therefore adopted a much older stationary-state ap­
proach [13J, in which planes of cold particles, moving to the 
right at the shock velocity and selected from a square lattice 
with appropriate random particle displacements, periodically 
replace an equal number of particles, removed at the right 
boundary, which have velocity Us - up. The boundary ve­
locities and the number density of the incoming material are 
chosen to match a solution of the fluid conservation equa­
tions. Right and left mirror boundaries and top and bottom 
periodic boundaries complete the model description. See Fig. 
1 for a typical snapshot. 

This approach was successful. A system with 3240 par­
ticles produced a nominally stationary profile. In the vicinity 
of the shock front, the hydrodynamic variables are statisti­
cally indistinguishable from those for 12960 or 51 840 par­
ticles. The profiles shown in Fig. 2 correspond to a compres­
sion ratio of 3:2, with entrance and exit velocities of 1.35 and 
0.90. The range of the potential, h 3, together with an ini­
tial number density of unity, corresponds to nearly 30 pair 
interactions for a typical dense-fluid particle. The system size 
was cycled smoothly from 144x72 down to 143X72, at 
which point three columns of 72 particles were introduced at 
the left boundary and the 216 hot particles nearest the right 
boundary were removed, readjusting the position of both 
mirror boundaries to the left. 

Average profiles were generated using Hardy's scheme 
[14J over a time period corresponding to 20 complete re­
placements of all the particles in the system. It is noteworthy 
that both the longitudinal temperature Txx and the mean tem­
perature T=[Txx+Tvv]/2 have pronounced maxima. The 
heat flux, in the comoving frame of the fluid, proceeds al­
ways from right to left, corresponding to a negative heat 
conductivity in the hot fluid, in contradiction to Fourier's 
Law, but in agreement with Mott-Smith's strong shock wave 
model [14J. He approximated the velocity distribution within 
the shock as a linear combination of the hot and cold distri­
butions. Half the average kinetic energy of a pair of particles, 
one hot and one cold, exceeds the average of their tempera­
tures by (1I8)mu; : 

kThO /+ kTco1d + (1I4)mu;. 

The excess thermal energy provides the physical interpreta­
tion for the temperature maximum found in the stationary 
profiles. In the steeply rising portion of the wave, where the 
heat conductivity is positive, both the shear viscosity and the 
conductivity, as measured in the shock wave 

are in semiquantitative agreement with values from indepen­
dent shear-flow and heat-flow simulations [3,5~7]. 

m. CONCLUSIONS 

Our results characterize the (i) stability, (ii) consistency, 
and (iii) anisotropicity of two-dimensional strong shock 
waves. Because the rms displacment of two-dimensional par­
ticles diverges in large systems [15], and because the analy­
sis of surface vibrations as superpositions of Rayleigh waves 
suggests divergence in three dimensions and an even stron­
ger instability in two, one might suspect that planar shock 
waves would be unstable in the present case. On the other 
hand, it is usual to imagine that shock waves are stabilized 
by compressibility: lagging troughs in a sinusoidally per­
turbed wave front generate a higher pressure and catch up; 
any crests leading the main wave generate lower pressures 
and slow down. Our two-dimensional simulations support 
the existence of stable planar shock waves in a two­
dimensional dense fluid. 

Because the temperature gradients dTxxldx and dTldx 
from Fig. 2 both change sign while the heat flux component 
dQx1dx does not, no positive Fourier conductivity is capable 
of describing our profiles. This inconsistency with linear hy­
drodynamics is, likewise, a feature of Mott-Smith's model 
for strong three-dimensional shock waves. Thus, the sugges­
tion [11] that the transport coefficients be chosen on the basis 
of the longitudinal temperature Txx rather than the average 
one (Txx+Tyy)/2 [11] is less useful in two dimensions than 
in three. The source of the substantial temperature anisotro­
picity is not hard to find or explain. Mott-Smith's idea that 
the velocity distribution is best viewed as a combination of 
hot and cold parts has been borne out by our simulations and 
establishes that a kinetic theory, as opposed to an extension 
of Navier-Stokes reasoning, must be used to understand 
these interesting far-from-equilibrium systems. 
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