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We define and study the heat conductivity K and the Lyapunov spectrum for amodified "ding-a-ling" chain 
undergoing steady heat flow. Free and bound particles alternate along a chain. In the present work, we use a 
linear gravitational potential to bind all the even-numbered particles to their lattice sites. The chain is bounded 
by two stochastic heat reservoirs, one hot and one cold. The Fourier conductivity of the chain decreases 
smoothly to a finite large-system limit. Special treatment of satellite collisions with the stochastic boundaries 
is required to obtain Lyapunov spectra. The summed spectra are negative, and correspond to a relatively small 
contraction in phase space, with the formation of a multifractal strange attractor. The largest of the Lyapunov 
exponents for the ding-a-ling chain appears to converge to a limiting value with increasing chain length, so that 
the large-system Lyapunov spectrum has a finite limit. [S1063-65lX(98)1151O-6] 

PACS number(s); 05.70.Ce, 05.20.-y, 31.15.Qg, 47.70.-n 

I. INTRODUCTION of freedom, it has been established [9], even rigorously [10], 
that the phase-space distribution function can occupy a mul­

Casati, Ford, Vivaldi, and Visscher introduced their tifractal attractor, with an information dimension reduced 
"ding-a-ling" model in 1984 [1]. This one-dimensional well below that of the unconstrained equilibrium distribu­
model is, arguably, the simplest mechanical model to exhibit tion. For stochastic boundaries, however, it has been stated 
Fourier heat flow, with a well-defined thermal conductivity, that the distribution is absolutely continuous [6,7], without 
K= - Q/(dT/dx), in the long-chain-length limit [2]. Here, any fractal character. There are no numerical results confirm­
Q is the heat flux, and dT/dx is the temperature gradient ing this idea, and the present work developed, in part, to test 
along the chain. In the original version of this model [1,2] all it. In a recent study of the phase space structure of a driven 
even-numbered particles were bound to their lattice sites Lorentz gas with a partially stochastic boundary we have 
with harmonic springs, while the odd-numbered particles found numerical evidence suggesting that multifractal attrac­
were able to move freely, between their adjacent bound par­ tors may coexist with stochastic boundaries [8]. 
ticles, transporting heat. The system was bounded by two The noise introduced by stochastic boundaries is a com­
stochastic heat reservoirs, which served to drive the chain plicating feature for any comparison with deterministic ther­
into a nonequilibrium steady state. In a variant of this model, mostatted boundaries. We are particularly interested in the 
introduced by Prosen and Robnik [3], all interior particles chaotic properties of nonequilibrium steady states. It is of 
are harmonically bound to lattice sites. The first and last interest to determine, first of all, whether or not a Lyapunov 
particles move freely, coupling the chain of colliding oscil­ spectrum exists for a system with stochastic boundaries. We 
lators to the terminating stochastic heat baths. have developed an approximate method for estimating such a 

Recently, Hu, Li, and Zhao [4] considered one­ spectrum and apply it here to a slightly modified version of 
dimensional Frenkel-Kontorova chains, consisting of par­ the one-dimensional ding-a-ling model. We find that the re­
ticles connected by harmonic springs and, in addition, sub­ sulting approximate spectra resemble those from other non­
jected to an external sinusoidal potential. They showed that equilibrium steady-state simulations [6,9-12], with a nega­
this external potential (the "lattice") assumes the role of the tive overall sum corresponding to the collapse onto a phase­
bound lattice particles in the ding-a-ling model and that a space strange attractor. However, the dimensionality loss is 
strong phonon-lattice interaction, inducing phonon scattering quite small, of order liN for a fixed temperature difference 
on the lattice, is the key for the existence of a finite heat between the stochastic boundaries of the chain, due to the 
conductivity in the long-chain limit. Anharmonicity in the one-dimensional nature of the model. 
potential is not sufficient and can lead to a diverging conduc­ The convergence of the Lyapunov spectrum for increas­
tivity as exemplified by the Fermi-Pasta-Ulam f3 model [5]. ing system size in equilibrium is another interesting question. 

In studies of nonequilibrium steady states it is presently In two dimensions this convergence turned out to be delicate, 
unclear to what extent the phase-space distribution function [6] apparently depending on the details of the boundary con­
depends on the choice of boundary conditions [6]. It is quite ditions. There is numerical evidence for systems of hard 
reasonable, as we detail later, to expect boundary effects, of disks in two dimensions [11], and for hard spheres in three 

~ order N- lID in D dimensions, where N is the number of [12], that the maximum exponent exists. Our results for the 
particles. Such boundary effects can be sensitive to the de­ one-dimensional ding-a-ling model indicate that the largest 
tails of their implementation. Using deterministic feedback to Lyapunov exponent converges to a definite limit with in­
impose energetic or thermal constraints on boundary degrees creasing system size, as might be expected for the Einstein­
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like ··localized-mode nature of the motion. In contrast, the 
Fenm-Pasta-Ulam f3 model, which is characterized by a di­
verging heat conductivity, seems to exhibit a logarithmic di­
vergence of the maximum Lyapunov exponent with chain 
length [16] emphasizing the nonlocal character of its dy­
namical processes. 

For the ding-a-ling model there is no special reason to use 
a harmonic binding potential for the particles bound to a 
lattice site. Here we modify the original model of Casati 
etal. by using a gravitational potential, ¢>=mglx-xol, 
rather than a harmonic one, for the even-numbered bound 
particles. Here, x stands for a bound-particle coordinate, and 
Xo denotes the respective lattice site. The choice of a (one­
dimensional) gravitational potential has the advantage that 
the times at which bound-free collisions occur can be found 
analytically, by solving quadratic equations. The simplified 
model has the same qualitath:e properties as the original one, 
but offers the advantage of superior computational effi­
ciency. In Sec. II we introduce our model and describe an 
exact algorithm for the computation of Lyapunov spectra in 
tangent space. Particular emphasis is given to the proper 
treatment of stochastic boundaries on both ends of the chain. 
This allows the computation of full Lyapunov spectra for 
chains supporting stationary heat flow described by Fourier's 
law (in the long-chain limit). Our simulation results, both for 
equilibrium and stationary nonequilibrium chains, are pre­
sented in Sec. III. We conclude, in Sec. IV, with a few re­
marks. 

II. MODIFIED DING-A-LING MODEL FOR HEAT 

CONDUCTION 


At first glance it seems odd that a one-dimensional model 
could lead to (i) chaos, (ii) ergodicity, within the constraint 
xi:;;;;xi~l' and (iii) well-defined transport coefficients. But a 
sufficiently strong phase-space mixing, brought about by the 
phonon-lattice interaction, is enough for all three properties. 
The original ding-a-ling model, as well as the modification 
considered here, were specially constructed with chaotic 
mixing in mind. The bound particles can be made to vibrate 
rapidly, relative to the collision rates of their neighboring 
free particles, effectively randomizing the collisions. Casati, 
Ford, Visscher, and Vivaldi [1] used harmonic restoring 
forces and showed that for two-particle systems with peri­
odic boundaries almost-K-system behavior is found for os­
cillator frequencies (their case w 3), for which the ratio of 
the oscillator frequency, VB, to the bound-free collision fre­
quency, VBF, may be estimated to 3Y3/1T. Thus, a ratio 
equal to or exceeding this value generates enough mixing in 
phase space to allow Fourier's law to be valid in the long­
chain limit [1,2]' This conclusion holds in spite of the fact 
that trajectory plots, like the sample shown in Fig. 1, indicate 
that repeated collisions, involving the same bound-free pair 
more than once, are relatively common. In such events the 
bound particle oscillates, colliding two or more times with 
the moving free particle, and ultimately reversing its direc­
tion of motion. 

To avoid numerical root finding, we modify the original 
ding-a-ling model slightly and use gravitational forces for 
the bound particles instead of hannonic ones. The Hamil­
tonian is written as 

x 

4 

2 3 4 5 6 7 8 9 10 

FIG. 1. Typical space-time trajectories for a gravitational ding­
a-ling model with 9 particles, where the time is plotted along the 
horizontal axis. The boundary temperatures are 10 at the top, and 30 
at the bottom, in units of T* mgoO'lkB • The gravitational field 
strength is 100go. 

N Pk2 ] 
H= ~ 2 +mgklxk-k(T1 +{hard core}, 

k=l m 

where the gravitational acceleration gk=O for the odd­
numbered free particles, and "gk= lOOgo for the even­
numbered bound particles. Xk and Pk are the spatial coordi­
nate and the momentum, respectively, of particle k. In the 
following we use reduced units for which the particle mass 
m, the mean interparticle spacing (T, and the gravitational 
constant go are all unity. Our unit of time is «T/go) 112, and 
the unit of energy is m(Tgo. Note that the gravitational field 
is 100 in our reduced units. Since also Boltzmann's constant 
kB is taken as unity, all temperatures are measured in units of 
T*=mgo(T/kB . With a mean temperature of 20T*, the typi­
cal frequency VB of an oscillating bound particle is VB 

=25/..j60(go/(T) l!2. Since the thennal velocity is 
ji6(go(T) 112, the bound-free collision rate VBF may be esti­
mated as 4/..j20(go/(T) 1/2, and the ratio VB/vBF becomes 
25/( 4 Y3). This number is almost twice that quoted above for 
the original model. Thus we expect mixing to be sufficient 
for Fourier's law to hold also in our case. 

It is quite instructive to relate our reduced units to a typi­
cal atomic chain with (T~3X 1O~~10 m, m~4X 10-26 kg, 
and a bound frequency vB~ 1012 Hz. For the unit accelera­
tion one finds go-3X 1013 ms-2, and the temperature of 
20T* corresponds to about 500 K, a reasonable number. The 
temperature gradients, however, tum out to be quite large, as 
discussed later. 

Trajectories were constructed by ordering all the collision 
times (including all those times when the bound particles 
return to their lattice sites, requiring a change in sign of the 
gravitational force) and choosing the smallest to update the 
system. In carrying out all our simulations, the momenta 
acquired by the first and last particles, on hitting the stochas­
tic boundaries at Xhot=O and Xeold=L=(N+ 1)(T, were se­
lected from a one-sided equilibrium distribution f(p) ~ 
- ( kT)-ll I -p2/2mkT .. .- m P e , where T IS eIther Thot or Teold ' FIg­
ure 1 shows a typical space-time trajectory segment for a 
nine-particle system. The time-averaged values of the par­
ticle kinetic energy and boundary heat flows were accumu­
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lated in order to obtain the temperature profile and the heat 
conductivity. Just as is suggested by elementary kinetic 
theory, we expected to find a heat conductivity varying as the 
square root of temperature, leading to a constant-flux profile, 
with the temperature proportional to the 2/3 power of the 
coordinate. Instead, the numerical results suggest quite a dif­
ferent power law. See Fig. 3. In the following section we 
explain the reason for this interesting finding. 

The Lyapunov exponents, which can be used to determine 
the dimension of phase-space strange attractors [lOJ, need 
special consideration in view of the stochastic boundaries. 
These exponents describe the tendency of satellite trajecto­
ries to separate from, or converge toward, a reference trajec­
tory. They are obtained by following the dynamics of (infini­
tesimal) offset vectors in tangent space. Between consecutive 
instantaneous events, separated by a time interval T, the 
offset-vector components {ox, op}, associated with the posi­
tion x and momentum p of a particle, evolve freely accord­
ing to the motion equations 

ox( T)= ox(O) + Top(O)lm, 0p(T)= op(O). 

If at the end of a streaming period a bound particle crosses its 
lattice site, the constant force on this particle changes sign 
instantaneously, and the tangent-vector components for this 
particle immediately before (-) and after (+) the crossing 
are related according to the "crossing map" [11,13] 

The components of all the other particles are unaffected. If 
the streaming is terminated by a collision between a bound 
(b) and a free (j ) particle, the collision map relating their 
tangent-vector components immediately before (-) and after 
(+) the collision becomes [11] 

ox: OXb (pi Pb)OTlm, oP: = opi-mgoT, 

where oT=-m(oxi-oXb)/(pi-Pb) denotes the delay 
time between the collision of the reference and the offset 

trajectories. g= l00go> 0, if the collision occurs to the left 

of the lattice site of the bound particle, and i = - 100g0< 0 
otherwise. All tangent-vector components of noncolliding 
particles are unaffected. 

Finally, if the streaming is terminated by a boundary col­
lision, two cases are distinguished: (i) If the boundary con­
ditions are adiabatic, corresponding to a fixed phase-space 
volume, the respective collision map for the colliding par­
ticle with a hard wall becomes [11 J 

ox + = - ox ~, op + = - op ~ . 

The resulting Lyapunov spectra then consist of pairs of ex­
__ ponents, { + A, A} summing to zero. Two of the exponents 

vanish because of energy conservation and nondivergent be­
havior in the flow direction. 

(iO In the nonequilibrium thermostated case, with a hot 
and a cold stochastic boundary, the statistical association of 
heat transfer .l. Q with phase volume OV, 

5.9 

That =Tcold =20 
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FIG. 2. Maximum Lyapunov exponent A.J for N-particle gravi­
tational ding-a-ling chains at a temperature of 20 T*. A.l is given in 
units of (gola)1I2. 

din oVldt=.l.QlkT, 

suggests that the components corresponding to the particle 
colliding with the stochastic boundary be scaled according to 
Gibbs' probability 

(ox op) +I( oxop)- et:.QlkT, 

leading to the collision map 

We show here that this procedure produces well-behaved 
nonequilibrium Lyapunov spectra. The sum of all the 
Lyapunov exponents vanishes for eqUilibrium systems, Thot 

Tco1d , and is strictly negative for steady nonequilibrium 
heat flow for which Thot> Tco1d ' Since no quantity is strictly 
conserved for stochastic boundaries, no vanishing Lyapunov 
exponents are found. The resulting spectra, along with our 
conductivity data, are described in the following section. 

III. RESULTS 

We consider eqUilibrium systems first, for which the tem­
peratures of the stochastic boundaries on both ends of the 
chain are equal, 20T*. We have studied the maxi­
mum Lyapunov exponent for chains containing up to 2047 
particles. Our simulation results are summarized by the 
crosses in Fig. 2. The smooth line constitutes a fit of a poly­
nomial in liN to the data points, 

We find that the maximum exponent is well behaved in the 
long-chain limit. There is no indication of a divergence of A1 

for N ---+ 00 for this one-dimensional chaotic system. This re­
sult is in accord with our earlier results for hard disks in two 
dimensions [11], and for hard spheres in three [12]. We have 
found finite limiting exponents also for two-dimensional sys­
tems in nonequilibrium steady states with up to 32000 [14] 
and 102 400 particles [15]. On the other hand, Searles et al. 
[16] interpret a weak, but persistent, increase of A1 with N 
for a Fermi-Pasta-Ulam f3 chain with up to 100000 particles 
as a possible sign of a logarithmic divergence. 
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FIG. 3. Temperature profile for various chains with different 
lengths L and boundary temperatures. The labels indicate Thot 

Teold ' On the abscissa normalized particle coordinates xlL are 
used. The unit of temperature is T* = mgoulkB . 

Next we tum to the stationary nonequilibrium case. We 
detenuined the full Lyapunov spectra for systems with up to 
63 particles. For larger systems N> 127 only the two largest 
exponents were obtained. The temperature for each particle 
was determined from its time-averaged kinetic energy. Tem­
perature profiles for various chain lengths and temperature 
gradients are shown in Fig. 3, where a normalized particle 
coordinate xlL is used on the abscissa. The labels Thot 

- Tcold refer to the temperatures of the one-sided momentum 
distributions f(p) used for the simulation. One observes (i) 
that for large temperature gradients (short chains) the ex­
trapolated wall temperatures To and TL do not agree com­
pletely with Thot and Tco1d ' respectively; (ii) that the tem­
perature dependence of the conductivity K(T) gives rise to 
considerable nonlinearity in the profiles. The ansatz K 

= Ko(TlT*)Cf, together with a constant space-independent 
heat flux Q - K(dTldx) , leads to Ko(TIT*)CfdT 

- Qdx, which, integrated along the chain, yields 

To is the higher temperature at x=O. From elementary 
kinetic-theory arguments we expected, initially, to find a 
=112. However, the experimental profiles are consistent 
with 01= 3/2. If the wall temperatures To (hot) and h(cold) 
are determined from a fit of Eq. (I) to the experimental data, 
with 01= 3/2 fixed, one obtains a universal curve for all pro­
files by plotting [T(x)5/2- Tg12]/(Tf2- T6(2

) as a function of 
xlL. See Fig. 4. The constant KO= (0.0236 

0.0003)kB(go/(r)1I2, the conductivity at unit temperature 
T*, turns out to be independent of N for chains with N 
~ 15. This result clearly shows that Fourier's law of heat 
conduction is obeyed for long gravitational ding-a-ling 
chains, thus confinuing analogous conclusions for the origi­
nal ding-a-ling model [2] or related models [3,4]. 

We were able to understand this dependence by solving a 
simple Master-equation kinetic-theory model for the tem­
perature profile. The model assumes that the bound particles 
are characterized by temperatures while the free particles 
have momentum and energy fluxes determined by the tem­
perature of their last collision with a bound particle. If these 
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FIG. 4. Universal representation for various chains with differ­
ent lengths L and boundary temperatures. The ratio 
- T'fl/(Tf2- T'f) is plotted as a function of the reduced particle 
coordinate xlL for the profiles shown in Fig 3. Not included are the 
data for Thot-Tcold=(36-4)T* for which, as is outlined in the 
main text, Fourier's heat conduction does not occur near the cold 
boundary. 

fluxes are then used to determine the energy flow between 
bound particles the power-law relation 01= 312 results from 
the resulting stationary state. 

In Table I we have listed some of our nonequilibrium 
steady-state results for the gravitational ding-a-ling model: 
the extrapolated boundary temperatures To and TL, the heat 
flux Q, the time-averaged kinetic and potential energies per 
particle (K)IN and (¢»IN, respectively, the thermal conduc­
tivity at unit temperature, KO' the maximum Lyapunov ex­
ponent AI' and, for the shorter chains, also the sum of all 
Lyapunov exponents 2.7!!1 AI' From these data one infers 
that the flux Q varies as liN. Since, according to Fig. 3, also 
the temperature gradient is proportional to liN, the conduc­
tivity K approaches a finite limiting value for large N, as we 
had expected. 

At this stage a short remark about the convergence of the 
simulation is in order. The simulation time must exceed the 
decay time Ttherm of a perturbation due to heat diffusion on a 
scale of the length of the chain. The latter may be estimated 
from Tthemlal~L2/(K/pC), where p, the mass density, and C, 
the specific heat, are of order unity, and K(T= 20T*) 
=2kB(gO/(]')li2. Most of our simulations were longer than 
5 X 106 reduced time units, sufficient for the longest chains 
studied here. The Lyapunov exponents converge much faster 
than the local temperatures. 

The Lyapunov spectra for nonequilibrium systems differ 
only slightly from equilibrium spectra of the same chain, for 
which both boundary temperatures are equal. As an example 
we show in Fig. 5 a spectrum for a 63-particle chain with 
boundary temperatures Thot= 28 and Tco1d=12 in units of 
T*. Although not noticeable on the scale of this figure, the 
sum of all exponents is negative. From the Kaplan-Yorke 
formula we deduce that the information dimension D 1 of the 
underlying strange attractor in phase space is 125.9954 
::t: 0.0001. This corresponds to a reduction in dimensionality 
aD=0.0046::t:0.0001. We observe from Table I and from 
Fig 6 that aD varies, for given Thot-Tcold, as the heat flux 
Q and, consequently, is proportional to liN. But also the 
driving temperature gradient decreases with liN if the length 
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TABLE 1. Simulation results for nonequilibrium chains of N particles and length L=(N+ 1)17. The left 
and right stochastic-boundary temperatures, and T co1d ' and the extrapolated temperatures, To and , are 
given in units of T* == mg0171kB' KO' the conductivity at unit temperature, is in units of kB(go/(T)I!2. 
Q is the heat fiux (units: mg~2(Tll2), A1 the maximum Lyapunov exponent [units: (go 1(7) 112J, and 2,f~l is the 
sum over all exponents. t:.D=2N-D l is the dimensionality reduction, where D j is the Kaplan-Yorke 
(information) dimension. (K)INand (<P)I N are the time-averaged kinetic and potential energies per particle, 
respectively, in units of mgo(T. 

2,2NN T hot Tcold To TL KO Q Al 1=1 t:.D (K)IN (<P)/N 

7 22 18 21.9 18.1 0.0234 0.972 4.782 -0.0098 0.00205 10.01 8.23 

15 22 18 21.9 18.0 0.0233 0.503 5.334 -0.0051 0.00095 10.03 8.96 

31 22 18 21.9 18.0 0.0233 0.253 5.585 -0.0026 0.00046 10.04 9.30 

63 22 18 21.9 18.0 0.0237 0.130 5.709 10.04 9.46 

127 22 18 21.9 18.0 0.0232 0.065 5.775 10.02 9.52 

7 24 16 23.5 15.9 0.0232 1.932 4.781 -0.040 0.0084 10.04 8.25 
15 24 16 23.7 15.9 0.0234 1.009 5.336 -0.021 0.0040 10.10 9.02 
31 24 16 23.9 16.0 0.0233 0.516 5.590 -0.011 0.0020 10.18 9.41 
63 24 16 24.0 16.0 0.0235 0.265 5.718 0.006 0.0010 10.21 9.59 

127 24 16 23.9 16.0 0.0236 0.131 5.784 10.17 9.63 
255 24 16 24.0 16.0 0.0236 0.067 5.829 10.22 9.71 

15 28 12 27.3 11.0 0.0235 2.054 5.344 -0.098 0.0183 10.46 9.29 
31 28 12 27.6 11.4 0.0238 1.063 5.605 -0.051 0.0090 10.61 9.74 
63 28 12 27.9 11.7 0.0238 0.544 5.741 -0.026 0.0046 10.72 9.98 

127 28 12 28.0 11.8 0.0239 0.274 5.817 -0.014 0.0023 10.76 10.10 
255 28 12 28.1 11.7 0.0230 0.134 5.867 10.79 10.16 

15 36 4 33.8 0 0.Q25 4.270 5.36 0.948 0.176 11.80 10.30 

-. 31 
63 

36 
36 

4 
4 

35.1 

35.9 
0 
0 

0.024 

0.025 

2.322 

1.206 

5.66 

5.81 

-0.516 

-0.277 
0.091 

0.047 

12.40 

12.65 

11.10 
11.44 

127 36 4 36.0 0 0.Q25 0.606 5.90 -0.136 0.023 12.74 11.58 

255 36 4 36.3 0 0.025 0.308 5.96 12.88 11.73 

of the chain increases. For a constant heat flux we deduce 
from Fig. 6 that for not too large temperature gradients the 
dimensionality reduction AD is proportional to N reminis­
cent of the extensivity found for dynamically thermostated 
homogeneous nonequilibrium systems [10]. Here we are lim-, 
ited to rather short chains (small N) to observe this extensive 

6 ,
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FIG. 5. Lyapunov spectrum for 63 ding-a-ling particles and for 
the boundary temperatures Thot = 28 and Tco1d = 12 in our reduced 
units T* = mg 0171kB . The sum over all exponents is negative as 
indicated in Table 1. The Lyapunov exponents are given in units of 
(go/(T)l!2. 

behavior. The reason is that the temperature gradients cannot 
be increased arbitrarily to allow for larger N, and that the 
temperate Tcold becomes so low in the process that the ratio 
VB I vBF is too small to support Fourier heat conduction near 
the cold boundary. This happens already for the largest gra­
dients studied here for which Thot=36T* and Tcold=4T* to 

36- 4 
0.1 

LlD 28-12 
24-16 

0.01 22-18 

0.001 

0.0001 
10 

Q 

0.1 1 

FIG. 6. Dimensionality reduction t::.D as a function of the heat 
fiux Q for the boundary-temperature differences Thot- indi­
cated by the labels (in units of T* = mgoJ/kB)' The straight lines 
are a fit of a linear relation t::.D aQ to the data points. Along each 
line N varies parametrically. 
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FIG. 7. Mean squared components 8i.l for a gravitational ding­
a-ling chain of 63 particles coupled to stochastic boundaries with 
Thot=28T*, and 12T*. Only Lyapunov indices 1~1~63 
associated with positive exponents are considered. 

which the topmost line in 6 refers: For fixed Q, ~D 
starts to increase much faster than proportional to N, once 
Tcold drops below lOT*. We also note that for a given length 
of the chain the reduction in dimensionality increases with 
the square of the temperature gradient, as expected. From an 
atomistic point of view the temperature gradients appearing 
here are extremely large. 

In one dimension, the flow of heat, for a fixed temperature 
difference, is inversely proportional to system size. In two 
dimensions, for a square system, the heat flow is unchanged, 
while in three it increases. Thus the one-dimensional systems 
become more and more like equilibrium systems as the size 
is increased. The decreasing dissipation, with increasing sys­
tem size, means that the reduction in phase-space dimension­
ality is largest for small systems. 

In previous work [15,17,18J we have introduced so-called 
"squared particle components" OJ,1 defined as the projec­
tions of the offset vectors 01 {OXI, op I,"" OxN' OpN} I, as­
sociated with the Lyapunov exponent AI, onto the subspaces 
spanned by the phase variables of an individual particle i: 
07/"={OX7+ opt},· Since the offset vectors are taken as unit 
vectors in tangent space, the squared components obey the 
sum rule 2:.f=l07.t= 1 for each l. They indicate to what ex­
tent a particular molecule i contributes to the phase-space 
expansion (contraction), as is quantified by AI, at any instant 
of time. In Fig. 7 we show oT,l for a stationary nonequilib­
dum chain of 63 particles, 1 and for alll associated 
with positive exponents, 1 ~i~63. For I ) referring to the 
maximum exponent always a very localized active zone is 
observed to which only very few particles, sometimes only 
one or two, belong at any instant of time. It is a consequence 
of the competition between various colliding particles and a 
selection process introduced by the renormalization of the 

offset vectors in tangent space. An analogous behavior has 
been found in two dimensions for various dynamical systems 
[15,17,18] without stochastic boundaries, and has been also 
predicted from theoretical arguments [19]. The patterns of 
0;,1 for larger I, may be much more complicated and less 
localized, and may involve various clusters of particles. In 
contrast to previous studies with two-dimensional dynamical 
systems [18] we do not find a coherent modelike structure 
for I belonging to the smallest positive exponents. This find­
ing is partially due to the stochastic boundaries, but is mainly 
due to the lack of any long-wave acoustic modes. 

IV. CONCLUSIONS 

We have confirmed that the ding-a-ling model has a well­
behaved heat conductivity. Likewise, it appears that the 
Lyapunov spectrum has a c()nvergent large-system limit. We 
have developed an approach to the estimation of Lyapunov 
spectra for systems with stochastic boundaries, and used it to 
estimate the dimensionality loss of the strange attractor for a 
conducting ding-a-ling chain. The loss is limited in one di­
mension, where only two particles constitute the entire 
boundary. It is logical to expect that this same method, in 
two and three dimensions, would lead to a phase-space di­
mensionality reduction of order N(D-I)ID in D physical di­
mensions for given Thot-Tcold' Although this latter depen­
dence would seem inconsistent with an extensive 
dependence, ~DrxN, as is suggested by irreversible thermo­
dynamics, where the entropy production is proportional to 
the total volume of the system, any system that is both driven 
and thermostated at the boundary will have a dissipation rate 
proportional to a transport coefficient and to L D-2. For hard 
particles the transport coefficient and the boundary driving 
can both increase, proportional to L, giving for the overall 
dissipation L D+ I. On the other hand, both the Lyapunov 
spectra and the boundary temperature increase, as L and L 2

, 

respectively, so that the dimensionality loss should decrease 
as the surface/volume ratio. 
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