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Maxwell’s Thermal Creep in Two Space Dimensions
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“Thermal Creep” is a steady streaming motion, induced by a temperature gradient parallel to a
fluid boundary, in the absence of gravity. Thermal creep has been studied by Maxwell, analyzed
by Kennard, and simulated by Ibsen, Scte, and Cordero. Here we report several two-dimensional
simulations. We find that the creep velocity is sensitive to the imposed macroscopic boundary
conditions and that the agreement with existing theoretical predictions is only semiquantitative.
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§1. Introduction

Maxwell explained thermal creep using ideas from ki-
netic theory.!) Consider a gas with a temperature gra-
dient parallel to a confining wall. Because hotter parti-
cles impart more parallel momentum to the wall than do
colder, a shear stress is exerted on the wall, with the gas
flowing from colder to hotter as a reaction force. The
resulting stationary velocity of the gas is the “thermal
creep” velocity, and is parallel to the wall. The flow
velocity is directly proportional to the temperature gra-
dient. Ibsen, Soto, and Cordero reported computer sini-
ulations of thermal creep for two-dimensional hard-disk
gases.”3) Though there were no gravitational forces, the
flow patterns which they reported resemble the familiar
convection rolls found in the Rayleigh-Bénard problem.®
The reported maximuin flow velocity, near the thermal
walls, was found to be in excellent agreement with a “the-
oretical” thermal-creep-velocity value Uy worked out in
the same article:? ‘

Up=Qu/8P.y,

where ()4 is the heat flux parallel to the wall, and P, 4
is the pressure. We discuss the theoretical cstunates fur-
ther in §3.

Because this interesting problem is perhiaps the sim-
plest instance of converting heat directly to work, and
also because the agreement with the theory was excep-
tionally good, we decided to extend these investigations,
also in two dimensions, but using two different sorts of
boundary conditions and four different system sizes. Our
sinmilations, and our numerical results, are described in
§2. Though in the main our results corrcborate those
of Ibsen, Soto, and Cordero, we find that the situation
is a bit more complex than is suggested by the simple
picture presented there. We find that the creep velocity
depends not only on the heat flux but also on the bound-
ary conditions. The “thecretical” estimate® is likewise

(1.1)
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uncertain so that the agreement between sirnulation and
“theorv” is best described as semiquantitative.

§2. Simulations

Our simulations were carried out all at the same over-
all number density, N/V | and with the same hard-disk

diameter, o = 0.2236, as in ref. 2, so that the dimension-
less density,

no? = No?/V = 1/20, (2.1)

provided a collisional contribution to the pressure ten-
sor of less than ten percent. The corresponding value
of Maxwell's mean frce path is A = 5v2¢ = 1.58. To
save computer time, particles follow straight-line trajec-
tories for a fixed timestep dt. If the distance between
any pair of particles is less than o, this pair needs to
interact during the time step. In beginning our study
we chose uniform random post-collision directions for
the relative velocities of colliding particle pairs. The
resulting simulations indicated the need for a more ac-
curate treatment. The stochastic collisions eliminated
velocity persistence {the statistically-averaged tendency
of the particles to continue moving in their original di-
rection after collision), and reduced the Prandtl number
from four to two, modifying the higher moments of the
velocity distribution unacceptably.®) Acoordingly, we ve-
peated out work using exact post-elastic-collisional ve-
locities for hard disk, interpolated to the precise time of
gach collision., There are two kind of boundaries. At
an insulated boundary, hard-wall collisions occur when-
ever the separation between the wall and the center of
a disk is less than ¢/2. In treating thermal boundaries,
particles hitting a thermostatted wall are ejected with a
normal velocity drawn from the proper one-sided Gaus-
sian distribution, v, fe,.
We chose a timestep:

At = 0.150 (m/ k)2 (2.2)

The resulting heat fux between two parallel walls bound-
ing a periodic channel was accurate to within five per-


mailto:shida@cs.musashi-tech.ac.jp

dd.LVvINSNI
v
Aa31LvVINSNI
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(b) INSULATED
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Fig. 1. Two-dimensional thermal creep geometry, “Chile” at the
left, and “insulated” at the right. The insulated walls are per-
fectly reflecting. The width of the band on the thermostaited
walls is proportional to the local wall temuperature.

cent. For convenience we chose numerical values of Boltz-
mann’s constant &, the hard disk mass 7n, and the high-
est boundary temperature 1% all equal to unity. With
a typical value of the timestep the mean distance cov-
ered by a high-temiperature particle was about onc-sixth
the particle diameter. The finite time step reduces the
effective collision rate by about one percent. A typical
simulation consists of a quarter million hard-disk col-
lisions, though results from much shorter runs are not
really significantly different.

We employ the two system geometries shown in Fig. 1.
The leftmost type, “Chile” geometry, is identical to that
of ref. 2. The temperature difference between the cold
left wall, at T, and the hot right wall, at Ty, causes
uniform heat conduction. The top and bottom walls have
a temperature gradient oc 2~1/2, with the temperature
continuous at the side walls. These boundaries cause
thermal creep flow from left to right, parallel to the walls,
returning to the left in the central vegion. The rightmost
boundary type, “insulated”, has insulated side walls, so
that the flow is only driven by the temperature gradient
along the top and bottom walls.

Our computed temperature profiles along the top and
bottom walls differ only very slightly from those of ref. 2.
The temperature profile on the boundary 7' o #2/% cor-
responds to a constant heat flux with x o 7%/2. This
functional form does not allow for the existence of a tem-
perature jump between the walls and gas near. Typical
time-averaged flow and heat ficlds are shown in Fig. 2,
for the Chile boundary conditions 2500 particles, with
V = L? = 20N¢? and Ty /T, = 10. Heat flows, roughly,
parallel to the top and bottom walls. The mass fow
forms two rolls, with the upper clockwise, and the lower
counterclockwise. Figure 3 corresponds to the insulated
geometry. Here the heat flux is very different because
it is necessarily parallel to the vertical walls. Neverthe-
less, the mass flux is nearly identical to the Chile bound-
ary conditions. The mass flux is smoothed, by using a
weighting function,

w(z = r/a) = (5/7a®)(1 — z)*(1 + 3z), (2.3)

where a = 2(V/N)/2, computing the mean velocity at
grid points with a spacing equal to a/2. The felds are
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Fig. 2. Heat flux (left) and Row velocity (right) for N = 2500
particles with “Chile” boundary conditions. The temperature
ratio for the two vertical walls 1s Ty /77 = 10. The maximum
heat flux is about (.08 at the cester and mean heat {lux from
right to left is 0.056. The maximum local creep velocity is 0.025.

One fourth of all grid points arc shown.

Fig. 3. Heat (ux (left) and flow velocity (right) for N = 2500
particles with “insulated” boundary conditions. The maximum
heat flux is .18 near the right wall and mean heat [ux {rom
right to left is 0.024. The maximum local creep velocity is 0.03.
The length of vector {s comparable with Fig. 2.

averaged over the final half of each simulation.

We follow the methods of ref. 2 to observe the creep
velocity. First, we choose two rows in which the flow
speed reachs the maximum values along each of the top
and the bottom walls. The row is between second and
fourth adjecent rows from the walls instcad of the next.
The velocity decrease near the wall is discussed in §3.
Secondly, for example, central 28 points out of 38 are
averaged for the creep velocity for 1444 particle case to
avoid the effect of virtical walls. These parameters have
been appropriately modified according to system size.
This procedure provides two estimates of the creep ve-
locity.

The ratio of the creep velocity to the thermal velocity
at the hot wall is shown in Fig. 4 as a function of the
inverse systemn length, measured in Maxwell free paths,
A/L. The creep velocily is a little higher in insulated ge-
ometry than Chile despite the smaller heat flux Q. The
nearly constant creep velocity, U for any system size is
the result of two offsetting effects, the change of temper-
ature gradient d7T'/dz with system size, and the intrinsic
size dependence of the creep velocity. Reoll rotation is
promoted in larger systems by reduced viscous stresses.

§3. Comparison with Theoretical Estimates

One “theoretical” creep velocity?’ pictures the velocity
distribution function f near a thermostatted wall as the
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Fig. 4. Dependence of reduced creep velocity, U/vy, on system

size for both *Chile” and “insulated” boundary conditions. Each
simulation gives two points, corresponding to the velocities near
the top and bottom walls. The corresponding particle number
for the four data sets are 625, 1444, 2500, and 3776. Data from
ref. 2, as well as additional data furnished by its authors, are
shown as triangles and labelled “Chile {(old)”.

average of a velocity distribution perturbed by d7'/dx for
incoming particles, and typical of the wall for outgoing
particles:

f(@_L > D) = fequilibrium; {31)
f(?f'_i_ < 0) = fequiiibrium
dlnT Tmv? D+2
1 — 2
X{ R {2&3’ 2 H (3:2)
in D dimensions. The collision time 7 is
(15/32)/m/wkT [ (no?), (3.3)

in three dimensions and /m/#wkT/(no) in two. The
resulting mean shear stress at the wall, (pv v //>, has the
same value in both two and three dimensions:

P,y = (k/V2ro)(dT/dz). (3.4)

The assmmption that this shear stress at the wall is ex-
actly offset by a How of parallel momentum from a uni-
form current parallel to the wall gives a creep velocity
which can be cxpressed in terms of the gas-phase heat
flux Q

Ug:’/’ = Q,{;’f(g + 2)3!.,(}’?

where D) is again the dimensionality. This estimate is
twice that of ref. 2, which uses a slightly different ar-
gument in relating the How velocity to the shear stress.
They assumed that the hydrodynamic velocity goes to
zero exponentially with the distance to the wall, propor-
tional to exp(—z/A).*) This is not in accord with the
observed velocity profile shown in Fig. 5 in which U/,
reaches a maximum at about one A away from the walls.

Our simulation suggest that the ratio of the creep ve-
locity Uy to the estimates varies about 0.8 power of the
system width, and have no large-system size limit. See
Fig. 6. Hence thermal creep is in fact more sensitive
ta the boundary conditions than to the heat flux. We
observe the decrease in creep velocity near the walls pre-
dicted by Sone.®) See Fig. 5 again. The decrease is due
to molecules hitting the walls with a mean parallel ther-

(3.5)
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Fig. 8. Typical creep velocity distribution at z = L/2. Uy fun
reaches a maximum at about one A away [rom the walls, and
decreases nearer the walls. See ref. 5.
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Fig. 6. Dependence of reduced creep velocity, U /Uy, where Uk
is Kennard’s estimate, on system size for both “Chile” and “in-
sulated” boundary conditions. Heat flux @, and pressure P, »
on which the estimate based are overall average of the systems.
The “theoretical” estimate from ref. 2 iz also shown, as Ua. Data
from ref. 2, as well as additional data furnished by its authors,
are shown as triangles. The reference line represents 0.8 power
of the system width.

mal velocity opposite to the mass velocity, According
to Sone’s three-dimensional analysis, the velocity should
increase from about thirty percent of the creep velocity
at the wall, to the maximum creep-velocity value, at a
distance of the order of a few Maxwell free pathis. The
velocity decrease found near the wall is slightly reduced
by the averaging inherent in our smooth weighting func-
tion.

§4. Conclusion

Only a rough explanation of thermal creep was avail-
able to Maxwell. Our present understanding is not much
better, and remains only semiquantitative. The simu-
lations presented here reveal two kinds of dependency.
There is a significant dependence of the results on system
size because the roll size influences the viscous stresses.
There is also a strong dependence on boundary condi-
tions, which are necessarily idealized in any simulation.
Comparing Figs. 4 and 5 suggests, as is quite plausible,
that the second moment of the velocity distribution is a
better reduction parameter for creep velocity than is the
third, Q.
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