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"Thermal Creep" is a streaming induced a temperature gradient parallel to a 
fluid boundary, in the absence of gTavity. Thermal creep has been studied by Maxwell, analyzed 

Kennard, and simulated by Ibsen, and Cordero. Here we report several two-dimensional 
simulations. vVe find that the creep is sensitive to the imposed macroscopic boundary 
conditioIls and that the agreement with existing theoretical predictioIls is only semiquantitative. 
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§1. Introduction 

rvIax\vell explained thermal creep using ideas froill ki­
netic theory. 1) Consider a gas with a temperature gra­
dient parallel to a confining wall. Because hotter 
des impart more parallel momentum to the wall than do 
colder, a shear stress is exerted on the wall, with the gas 
flowing from colder to hotter as a reaction force. The 
resulting stationary velocity of the gas is the "thermal 
creep" velocity, and is parallel to the walL The flow 

is directly proportional to the temperature gra­
dient. Ibsen, SoLo, and Corclero reported computer sim­
ulations of thermal creep for two-dimensional hard-disk 
gases. 2 ,3) Though there were no gravitational the 
flow patterns which reported resemble the familiar 
convection rolls found in the Rayleigh-Benard problem. 4 ) 

The reported maximmll flow velocity, near the thermal 
was found to be in excellent agreement with a "the­

oretical" thermal-creep-velocity value worked out in 
the same artide: 2) 

= (1.1 ) 

where Q II is the heat flux to the and 
is the pr~ssure. \Ve discuss the theoretical estimates fur­
ther in §3. 

Because this interesting problem is perhaps the sim­
plest instance of converting heat directly to and 
also because the with the theory was excep­
tionally good, we decided to extend these investigations, 
also in two dimensions, but using two clifl'erent sorts of 
boundary conditions and four difl'erent system sizes. Our 
simulations, and our numerical are described in 

Though in the main our results corroborate those 
of Ibsen, Soto, and Cordero, we find that the situation 
is a bit more than is suggested the simple 
picture presented there. \Ve find that the creep velocity 
Ue,lJellU;:, not only on the heat flux but also on the bounc1­
my conditions. The "theoretical" is likewise 
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uncertain so that the between simulation and 
"theory" is best describecl as semiquantitative. 

§2. Simulations 

Our simulations 'vere carriecl out all at the same over­
all number N /V, and with the same hard-disk 
diameter, 0' = as in ref. 2, so that the dimension­
less elensity, 

1/20, (2.1) 

provided a collisional contribution to the pressure ten­
sor of less than ten percent. The corresponding value 
of :'vIaxwell's mean free is /\ = 5/20' = 1.58. To 
save computer time, particles follow straight-line trajec­
tories for a fixed timestep elt. If the distance between 
any pair of particles is less than 0', this pair needs to 
interact during the time step. In beginning our study 
we chose uniform random post-collision directions for 
the relative velocities of colliding particle pairs. The 
resulting simulations indicated the need for a more ac­
curate treatment. The stochastic collisions eliminatecl 
velocity persistence statistically-averaged tendency 
of the to continue in their original di­
rection after collision), and reduced the PrallCltl number 
from four to two, modifying the higher moments of the 

distribution unacceptably:5) Acoordingly, we re­
peated out work using exact post-elastic-collisional ve­
locities for hard disk, interpolated to the precise time of 
each collision. There are two kind of boundaries. At 
an insulated boundary, harel-wall collisions occur when­
ever the separation between the wall and the center of 
a disk is less than 0'/2. In treating thermal boundaries, 
particles a thennostattecl wall are ejected with a 
normal velocity drawn from the proper one-sided Gaus­
sian distribution, 

vVe chose a timestep: 

(2.2) 

The resulting heat flux between two walls bound-
a periodic channel was accurate to within five per­
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(a) 	CHILE. (b) INSULATED 
SIDE WALLS. 

thermal creep geometry, "Chile'· at the 
right. The insulated \I·alls are per­

The width of the band on the thermostaLted 
walls is proportional to local wall temperature. 

cent. For convenience we chose numerical values of Boltz­
mann's const.ant k, the hard disk mass Tn, and the high­

boundary temperature Til all equal to unity. \Vith 
value of the timestep the mean distance cov­

a high-tempeTature particle was about one-sixth 
diameter. The finite tirne step reduces the 

effective collision rate by about one percent. A typical 
simulation consists of a quarter million hard-disk col-

though results from much shorter nms are not 
really significantly different. 

Vve employ the two system geometries shown in Fig. 1. 
The leftmost type, "Chile" geometry, is identical to that 
of ref. 2. The temperature differellce between the cold 
left wall. at T L, and the hot right walL at 1'11, causes 
uniform heat conduction. The top and bottom walls have 

x- 1/3a temperature gradient (X , with the temperature 
continuous at the side walls. These bounclaTies cause 
thermal creep flow from left to right, paTallel to the walls, 
returning to the left in the central Tegion. The Tightmost 
boundary type, "insulated", has insulated side walls, so 
that the flow is only driven by the temperature 
along the top and bottom walls. 

Our computed temperatnrc profiles along t.he top and 
bottom walls differ only very from those of ref. 2. 
The temperature profile on the boundary T (X cor­
responds to a constant heat fiux with K.. (X . This 
functional form docs not allow for the existence of a tem­
perature jump between the walls and gas near. 
time-averaged flow and heat fields are shm';n in 
for the Chile boundary conditions 2500 

2 .J IV = L = 20Ncr and TJl Tr.. 10. Heat 
parallel to the top and bottom walls. The mass flow 
forms two rolls, with the upper lo\ver 
counterclockwise. Figure 3 insulated 
geometry. HeTe the heat flux is very different because 
it is necessarily parallel to the vertical \valls. Neverthe­
less) the mass flux is identical to the Chile bound­
ary conditions. The mass flux a 
\veighting function, 

(2.3)(1w(x =:: ria} = 

where a = 2(VIN)1/2, the mean velocity at 
grid points with a spadng equ::d to The fields are 

Fig. 2. Hea: flux (left) and fiow velocity 
particies with "Chile" bound8!")" conditions. The temperature 
r8tio for the two verticai walls is TH ITl" 10. maximum 
heat flux is about 0.08 at the center and mean heat flux from 
right to left is 0.056. Tile maximum local velody 0.025. 
One fourth of ail grid points are shm\'ll. 

Fig. 
particles with 
heat flux is 0.18 near 
right to left 
The length of" 

for N 2500 
The maximum 

and meal! heat nux from 
\·elocity is 0.03. 

over the final half of each simulation. 
We follow the methods of ref. 2 to observe the creep 

velocity. we choose two rows in \vhich the flow 
speed reachs the maximum values along each of the top 
and the bottom walls. The row is between second and 
fourth acljecent rows from the walls instead of the next. 
The velocity decrease near the wall is discussed in 
Secondly, for example, central 28 points out of 38 are 

for the creep velocity for 1444 p31-ticle case to 
avoid the effect of vir-tical walls. These parameters have 
been appropriately modified according to systern size. 
This proceclure provides two estimates of the creep ve-

The ratio of t.he creep velocity to the thermal velocity 
at the hot wall is shown in Fig. 4 as a function of the 
inverse system length. measured in Maxwell free paths, 

The creep velocity is a little higher in insulated ge­
ometry than Chile despite the smaller heat flux Q1/. The 

constant creep velocity, (J for any system size is 
the result of two offsetting effects, the change of tPlnnpr_ 

atnre gradient dTIdx with system and the intrinsic 
size dependence of the creep velocity. Roll rotation is 
nrnn.nl,vl in larger systems by reduced viscous stresses. 

§3. Comparison with Theoretical Estimates 

One "theoretical" creep the 
distribution function f near a thenllostattecl \-vall as the 
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Fig. 4. Dependence of reduced ve;ocily, 011 system 
size for both "Chile" and boundary conditions. Each 
simulation gives two points, correspolldillg to the velocities near 
the top and bottom ,,·alls. The corresponding particle llumber 
for tile four data sets are 625, 2500, and 3776. Data from 
ref. 2, as well as additional data furnished by its authors, are 
shown as triangles and labelled "Chile 

average of a velocity distribution by ciT/ clx for 
incoming particles, and typical of the wall for outgoing 
particles: 

(3.1) 

f(v.1.. < 0) = 

f(lI.1.. > 0) 

dinT 
dx (3.2)x { 1 + TlI# 

in D dimensions. The collision time T is 

resulting mean shear stress at the , has the 

(15/32) (3.3) 

in three dimensions and The 

same value in both two and three dimensions: 

P.1..# = (k/V21Ta)(dT/dx) (34) 

The assumption that this shear stress at the wall is ex­
actly offset by a flow of parallel momentum from a uni­
form current parallel to the wall a creep velocity 
\"hich can be expressed in terms of the heat 
flux Qi( 

(3.5)Q#/(D 

gument 

where D is again the estimate isUUCHC.H0 

twice that of ref. 2, which uses a different ar-
in relating the flow 


They assumed that the 

zero exponentially with the distance to the propor­

tional to exp(-:r:j/\).3) This is not in accord with the 

observed velocity profile shown in 5 in which [TI/ 

reaches a maximum at about one ,\ away from the walls. 


Our simulation suggest that the ratio of the creep ve­
locity U// to the estimates varies about 0.8 power of the 
system vvidth, and have no size limit. Sec 
Fig. 6. Hence thermal creep is in fact more sensitive 
to the boundary conditions than to the heat flux. \Ve 
observe the decrease in creep near the walls pre­
dicted by Sone.6 ) See ;) The decrease is due 
to molecules hitting the walls with a mean parallel ther-

U(Y)/VH 
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Fig. 5. Typical creep velocity distributiOJ, at = L12. U// lUll 
reaches a. maximum at about one A away from the walls, and 
decreases nearer the walls, See ref. 
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Fig. 6. Dcependence of reduced creep U, where UK 
is I<ennard's estimate, on system size for both "Chile" and "in­
sulated" boundary condItions. Heat flux and pressure 
on which the estimate based are average of the systems. 
The '·theoretical" estimate from ref. 2 is also shown, as Uc . Data 
from ref. 2, as \\"ell as additional data furnished by its authors, 
are shown as triangles. The reference line represents 0.8 power 
of the system width. 

mal veiocity opposite to the 
the velocity should 

mass According 
to Sone's three-dimensional 
increase from about thirty of the creep velocity 
at the wall, to the maximum value. at a 
distance of the order of a few f..!Iaxwell free The 
velocity decrease found near the wall is 
by the averaging inherent in our smooth 
tion. 

§4. Conclusion 

Only a rough explanation of thermal creep was avail­
able to .iv1axwell. Our is not much 

The sin1ll­
lations presented here reveal two kinds of dependency. 
There is a significant dependence of the results on system 
size because the roll size influences the viscous stresses. 
There is also a strong on boundary concli­
tions, which are necessarily idealized in any simulation. 
Comparing Figs. 4 and 5 as is quite plausible, 
that the second moment of the distribution is a 
better reduction parameter for creep than is the 
third, Q1/. 
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