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Numerical simulations of the fully compressible Navier-Stokes equations are used to study the transition 
from simple-periodic "harmonic" themml convection to chaoHc [hemml convection as the Rayleigh number 
Ra is increased. The simulations suggest that a sharp discontinuity in the relationship between the Nusselt 
number Nu (the ratio of the total heat flux to the Fourier heat flux) and the Rayleigh number is associated with 
this transition in flow morphology. This drop in the Nusselt number is also seen in the data reported in 
independent experiments involving the convection of two characteristically different fluids-liquid mercury 
[Phys. Rev. E 56, R130::! (1997)] (a nearly incompressible fluid with Prandtl number Pr=0.024) and gaseous 
helium [Phys. Rev. A 36, 5870 (1987)] (a compressible fluid with unit Prj. The harmonic flow generates a 
dual-maximum (quasiharmonicl temperature histogram, while the chaotic flow generates a single-maximum 
histogram at the center point in the simulated cell. This is consistent with the temperature distributions reported 
for the convecting mercury before and after the drop in :\u. Our simulations also suggest a hysteresis in the 
Nu-Ra curve linking the two distinctly different flow morphologies, heat fluxes. and temperamre-fluctuation 
histograms at the same Rayleigh number. [S I063-651 X(98)0 1909·6] 

PACS number(s): 47.27.Cn, 47.27.Eq, 47.1S.Fe. OS.70.Ln 
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1. INTRODUCTION 

In the well-known "Rayleigh-Benard" problem, a vis­
cous, heat-conducting fluid enclosed by thennal boundaries 
in a gravitational field makes a transition from quiescent 
Fourier heat conduction to steady convection at a critical 
Rayleigh number (Rae = 1708 with the Boussinesq approxi­
mation [1]). The steadily convecting flow transports heat 
more effectively, At a much higher Rayleigh number, the 
system makes a second transition, from steady convection to 
time-dependent convection. The previously steady convec­
tion rolls start to oscillate vertically. Observables, such as the 
heat flux and the position of the convecting rolls. vary peri­
odically (ham10nicaliy) in time [2.3]. Eventually, this peri­
odic motion gives way to chaotic flow as vertical plumes 
start to ihfluence the flow. Observables lose their simple time 
dependence, and the flow becomes irregular. 

Experiments with thennally convecting mercury, a low­
Prandtl-number fluid, reported in Ref. [4J. show that a well­
known power law for' 'hard" turbulent convection, relating 
the Rayleigh number to the dimensionless heat flux. 
Nu~Ra2n, persists after the inversion of the thermal and 
viscous boundary layers. Theories predicting this ~ power 
law [5,6] m'e based on the assumption that the thernlal 
boundary layer is purely diffusive and confined within the 
viscous boundary layer. The results of these experiments 
contradict the basic assumption of the theories. 

An interesting feature of the reported data is a "bump" in 
the Nusselt-number-Rayleigh-number relation showing that 
the Nusselt number drops with increasing Rayleigh number. 
This drop in Nussett number is accompanied by an apparent 
change in flow morphology, indicated by the temperature­
fluctuation histogram at a probe fixed at the center of the 
cell. The temperature histogram goes from a dual-maximum 
profile before the Nusselt number drop to a single-maximum 
profile. and has been interpreted, in the absence of the ability 
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to visualize the actual flow, as a change in the number 01 
convection rolls in the system. 

Another set of experiments. involving the convection of 
gaseous helium [7J, describes transitions in the flow mor. 
phology for Rayleigh numbers from 103 to lOll, The on~cl 
of the "oscillatory" convecting flow was reported for R,l 
= 9 X 10". The onset of the "chaotic" flow was reported f(1f 

Ra= 1.5 X 105 and continues to Ra = 2.5 X 105 A drop in tlk 
Nusselt number is seen in the data for the transition from th" 
oscillatory to chaotic flows. At much higher Rayleigh nurn. 

bers. the "hard-turbulence" state is reached, and the scalin;: 
relation Nu I ~Rao282 is reported. • 

Both experiments were conducted in cylindrical vesseh 
The vessel for the helium gas had an aspect ratio of I (CqU;l: 

height and width). The mercury experiments were conducic,: 
in various aspect ratio vessels. but the set of data that span, 
the transition from hannonic to chaotic flow was from ave. 
sel with an aspect ratio of :2 (twice as wide as high). 

II,RESCLTS 

Our simulations also reveal that a drop in the Nu.-;,c" 
number, as the Rayleigh number is increased, is associate' 
with the transition in the flow morphology from "periodji. 
to "chaotic" convection (see Fig. 1). Computer simulation 
offer the ability to visualize the time dependence of any lar: 
able field, such as the temperature or velocity. in order' 
characterize the flow. Time-averaged quantities. such as the 
heat flux, computed from simulations of increasing time an,' 
space resolution, are used to extrapolate a value for the COl: 

tinuum (zero-mesh) limit. Steadv-state convection is of> 

served for Rayleigh numbers up to 9 X 10-1. For slighli~ 
greater Ra, the simple-periodic "harmonic" flow is oh 
served. This is consistent with the results of experimen: 
with helium [7] and ab initio molecular dynamics simuLl 
tions [2]. The heat flux for this flow varies in time With "' 
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FIG. I, The Nusselt number for convecting flows of various 
Rayleigh numbers, Within the hysteretic range. t~vo flow morpholo­
~ies are possible. each corresponding to a different Rayleigh num­
~er, For example. at Ra= 2 X 105 , a harmonic flow with Nu 
",3.392 and a chaotic flow with Nu=2.959 are both stable possi­
bi'ities, 

single frequency, equal to the frequency of the vertical oscil­
lation of the rolls. This is the second characteristic frequency 
of the system-the first being the frequency that a volume of 
fluid travels around a convecting rolL This harmonic flow is 
stable for 9 X 104 > Ra> 2AX 105 • For slightly higher Rav­
leigh numbers, at least one additional characteristic fr~­
quency is introduced. that of cold. downward-flowing and 
warm, upward-flowing plumes sweeping horizontally back 
md forth. The time dependence of the heat flux for this flow 

more c?mplicated, and the time average is roughly 10% 
If Thls three-period flow is less efficient at transporting 
h~ ,ince the plumes disturb the opposite thermal boundary 
layer and sweep material in a direction that is counter to the 
jow of heat. The maximum Lyapunov exponent (for our 
discrete approximation) is greater for this flow. as expected 
for a "chaotic" system. This route to chaos, observed in our 
s!Omlations, is consistent with Ruelle's idea that if three in­
commensurate frequencies simultaneously exist ina system, 
:egular motion becomes highly unstable in favor of motion 
,)n a strange attractor (chaotic motionl [8]. We also find that, 
fl,r the two-period flow. the temperature histogram at a point 
in the center of the simulated cell is harmoniclike. having 
two maximum corresponding to the "turning-point" tem­
peratures, For the three-period (chaotic I flow, the tempera­
lUre histogram at the same point has a single maximum in the 
.:enter of the temperature range Fig. 2). This is consis­
tent with the temperature histogram for turbulent flows 
~1.2,9]. 

The computer simulations show that chaotic flow is pos­
iible for Ra> 1.3 X 105. This suggests that this drop in the 
Ra-Nu relation is an hysteretic link between two-period (har­
monic) and three-period (chaotic) flows. It is possible that 
[\.\0 systems, with the same Rayleigh number, have different 
tlow morphologies, heat fluxes (and Nu), and temperature­
rluctuation histograms. The coexistence of different flow 
:norphologies at the same Rayleigh number has been seen in 
;ip, tions of compressibte fluids [10], and using the Bouss­
:0 .pproximation of a convecting system [11]. 

III. METHODS 

The method used to study the transition to turbl.llent con­
lection involves numerically solvi, . the funy compressible 

(a) 'HARMONIC 

(b) 'TvRBHENT' 

FIG. 2, The temperature-fluctuation histogram for a point at the 
center of the simulated cell for the (a) "harmonic" and (b) "cha­
otic" flows. 

Navier-Stokes equations for a two-dimensional ideal gas, 
P eq = pk B T= pe, enclosed between two rigid thermal bound­
aries separated by a distance L, and in the presence of a body 
force g. The sides boundaries are periodic and have a length 
scale corresponding to a cell with an aspect ratio of 2. By 
considering units such that the Boltzmann constant, the mean 
density, and the heat capacity are set to unity. the Rayleigh 
number for the system is defined as Ra = ag ~ T L 3/ r; K, 

where a is the themlal expansion coefficient, and r; and K are 
shear viscosity and heat transfer coefficients. Since, for an 
ideal gas, a T- l, and the body force can be assigned a 
magnitude such that a small volume element of fluid movina 
from the lower high-temperature boundary to the upper low~ 
temperature boundary gains a potential energy to exactly 
compensate for the loss in thermal energy (g = ksj. T! PoL 
~ T! L. setting ks Po = 1). the Rayleigh number can be 

• ., ., \we 

wntten as Ra=~T-L-/TTJK, The Prandtl number Pr (the 
ratio of the kinematic viscosity to the thermal diffusion co­
efficient) is set to unity. The maximum velocity of the flows 
were always less than half of the sound speed, so shock 
waves do not influence the results. 

For each data point, the flow is allowed to develop from 
the initial conditions for several thousand sound-traversal 
times. At this point, calculations of the heat flux and tem­
perature histograms are carried out for several thousand more 
sound-traversal times, To demonstrate the existence of the 
hysteresis, the initial state of a run is set to a state of the 
well-developed flow of a run with a Rayleigh number that is 
different by 5000 (about 3% of the range). The Rayleigh 
number is varied in this study by changing either the trans­
port coefficients (which also varies the diffusion-traversal 
times). the mean temperature (which also varies the sound­
traversal time and the thermal expansion), or the length scale 
(which varies the diffusion- and sound-traversal times). In 
each case, the results are qualitatively the same, The stability 
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of the well-developed flows is tested by introducing a ran­
dom noise with a magnitude equal to roughly IOc,{; of the 
mean value of each state variable, and allowing the system to 
continue to develop. The stability test demonstrates that two 
stable, but different. flows are possible for the same Rayleigh 
number in this range. 

IV. CONCLUSIONS 

Although our simulations are not an explicit attempt to 
model the experiments with convecting mercury or helium. 
the character of the results is very similar. Since the simula­
tions use an ideal gas equation of state, model a compressible 
fluid, and have a unit Prandlt number, it is a fair model for 
the helium gas experiment. On the other hand. the simula­
tions are two dimensional (2D). The flows in a 2D system 
are different from those of a 3D system. The simulations are 
not very good models for the mercury experiments-2D 
rather than 3D, compressible rather incompressible, and in­
tennediate rather than low Pc Despite the difference, the 
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behaviors in all three situations have a commo 
n

characteristic-a drop in the heat flux as the system make
the transition to chaotic flow. ' 

Since the Nusselt number is identically equal to the di­
mensionless entropy production of the system, the resUlh 
s.uggest that this dynamical s~stem, driven farther from eqUt. 
IIbnum. has a sudden drop In the entropy production as it 
makes a transition to chaos. The maximum Lyapunov expo. 
nent for the simulation is a measure of the rate at which 
phase-space infonnation is lost. The drop in entropy produe 
tion for the system at the transition is accompanied by a 
corresponding increase in this rate of infonnation loss. 
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