Journal of Statistical Physics, Vol. 100, Nos. 1/2, 2000

Computer Simulation of Irreversible Expansions via
Molecular Dynamics, Smooth Particle Applied
Mechanics, Eulerian, and Lagrangian Continuum
Mechanics
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We simulate the far-from-equilibrium irreversible expansion of a compressed
ideal gas in two space dimensions. For this problem the particle trajectories
from conventional smooth particle applied mechanics are isomorphic to those
from a corresponding molecular dynamics simulation. The smooth-particle
“weight function” used to describe the expanding gas is identical to the pair
potential governing the molecular dynamics simulation. These many-body par-
ticle simulations are compared with those using a modified smooth-particle
algorithm invented by Monaghan, as well as with those based on conventional
grid-based Eulerian and Lagrangian methods.

KEY WORDS: Irreversible expansion; smooth particles; Eulerian continuum
mechanics; Lagrangian continuum mechanics.

I. INTRODUCTION

Continuum flow problems can be solved by several “particle methods” as
well as by using either fixed “Eulerian” or moving “Lagrangian” spatial
grids. “Smooth-particle” methods can be used to derive ordinary differential
motion equations for particles representing the continuum flow. The particle
accelerations depend upon the continuum constitutive relations. Particle
methods are specially easy to program. Smooth-particle methods also avoid
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the “butterfly” and “hourglass” shear instabilities which can complicate
Lagrangian grid-based solutions. The particle approaches are described in
Section II. The grid-based approaches are described in Section III.

Our long-standing interest in simulating and understanding irrevers-
ible processes led us to study the irreversible confined expansion of a com-
pressed ideal gas. An isoenergetic fourfold expansion should give an
entropy increase of kIn4 per particle. As it does for any isolated
Hamiltonian system, the incompressible form of Liouville’s Theorem®
implies that the statistical-mechanical Gibbs’ entropy of the expanding
fluid remains constant throughout the expansion process. Our detailed
study® showed that a properly coarse-grained entropy actually increases
very rapidly to the proper value—with most of the increase occuring within
a single sound traversal time—even in the absence of any explicit transport
coefficients in the deforming fluid. This rapid equilibration was surprising
to us. To some extent it is an artifact of the relatively poor representation
of interfaces and boundaries intrinsic to conventional particle methods.
Two conventional smooth-particle fluids, colliding at sonic velocities, typi-
cally interpenetrate one another. But any reasonable boundary between
two such colliding fluids would rule out such an unphysical interpenetra-
tion. Monaghan® has discussed these difficulties. He suggested and tested
modified algorithms designed to avoid them, as is discussed in the follow-
ing Section.

Numerical difficulties, associated with the propagation and collision of
density discontinuities, led us to a smoother simpler version of the confined
free expansion problem. We examined the equilibration of a periodic
“sinusoidal” density profile using a simple “polytropic” (power law) equa-
tion of state, P oc p2 By using fixed viscosity and conductivity coefficients
while increasing the system size we can systematically try to approach the
wholly nondissipative Eulerian limit for this model. Our numerical results
suggest that this problem is well-posed. It seems to us to be a useful test
case for the evaluation and improvement of competing simulation methods.
The sinusoidal equilibration problem is described in general terms in Sec-
tion IV, and its solution is then approximated, through simulations using
all four numerical methods, in the following Section V. Our conclusions
make up the final Section VI

II. SPAM AND MOLECULAR DYNAMICS

Continuum mechanics treats the time-development of the mass density
p, the velocity v, and the energy per unit mass e throughout space. Conven-
tional “SPAM” (Smooth Particle Applied Mechanics)“® begins with the
continuum partial differential equations linking the time development of the
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density, velocity, and energy per unit mass to spatial derivatives. These par-
tial differential equations are converted to a simpler finite set—we indicate
such a set by using curly brackets { --- }—of ordinary differential equations
for the particle variables—{r;, v;, e;}. The resulting ordinary differential
equations—five for each particle i: 1 <i< N in the two-dimensional case
and seven in three dimensions—follow from the continuum constitutive
equations. The density p, associated with each smooth particle is calculated
by a direct summation over that particle’s near neighbors:

pemgo)

Lucy’s weight function is a typical choice for w. It is normalized, has a
finite range /4, and two continuous spatial derivatives:

Wiaey(r <h)=(5/mh?) { 143 ” { 1 _” ’

h
f 2nrw(r) dr=1

0

Thus the calculation of the particle densities {p;} reduces to evaluating
simple sums and requires no time integration.

The smooth-particle equations of motion, giving the sets of particle
coordinates and velocities, {r;, v;}, resemble Newton’s motion equations
for a corresponding set of molecular dynamical particles interacting with a
pair potential w(r):

{';i:Uz’; U= —mz [(P/Pz)i+(P/P2)j] 'Viw(ri_rj)}

Provided that the pressure tensor P and mass density p vary slowly, the
particle accelerations {v,} are proportional to pair sums of weight-function
gradients. This interesting correspondence linking conventional SPAM to
molecular dynamics can be made exact, with the SPAM weight function w
playing the role of a molecular dynamics pair potential. It is only necessary
to adopt a simple polytropic equation of state for the equilibrium part of
the pressure tensor: P, = p*/2=pe. We use this constitutive relation
throughout, so that the conventional SPAM equations of motion are iden-
tical to that of conservative Newtonian molecular dynamics. We refer to
these particle equations of motion, without any transport coefficients, as
“SPAM” throughout the present work. For the ideal-gas polytropic equa-
tion of state the “energy equation” for the time development of the particle
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energies {m;é;} is exactly equivalent to the particle version of the con-
tinuity equation for {p,} =2m{é,}. The usual transport coefficients—shear
viscosity, bulk viscosity, and thermal conductivity—are all set equal to zero
in this case. For simplicity in what follows we choose the particle mass m
equal to unity and the range of the weight function equal to six: 4 =6, just
as in ref. 2.

Although this conventional approach to continuum simulations, with
the viscosities (#, #,,) and heat conductivity x added, works perfectly well
for subsonic flows like Rayleigh—-Bénard convection, more violent flows lead
to substantial unphysical interpenetration of opposing particle currents. To
prevent this interpenetration, so as to preserve interfacial boundaries and
to allow for the collision of solid bodies, Monaghan suggested a clever
modification of SPAM,® in which the particle motions {v;} depend on a
specially averaged velocity which differs little from the smooth-particle fluid
velocity at each particle’s location, {v);:

{f,- =v;,+m Z (v;— ;) wij/pi]}

J

The symmetrized densities p;—either arithmetic or geometric means of the
densities p; and p,—are chosen to guarantee the conservation of (linear)
momentum. The simpler approximation,

{r',.=<v>i52(vj) WU/Z w,-]}

J

is not conservative. Monaghan’s modification of SPAM thus closely
resembles ordinary Lagrangian continuum methods, but is immune to the
tangling and shear instabilities which complicate those methods.

In addition to using an averaged velocity for moving particles,
Monaghan included a repulsive central force, depending upon two
parameters, « and £, while excluding conventional viscosity—guaranteeing
the conservation of angular momentum as well as linear—between particles
i and j whenever the two particles approach one another. Monaghan’s
extra force is closely analogous to von Neumann’s “artificial viscosity,”
which was introduced to smooth out compressive velocity gradients. The
parameters a and ff defined by Monaghan correspond to von Neumann’s
linear and quadratic artificial viscosities. In all of our implementations of
Monaghan’s ideas we have used the values which he recommended, a=1;
f=2. We will refer to Monaghan’s modification of SPAM, with the sym-
metrized densities p,;, as SPAM,,;.
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I1l. EULERIAN AND LAGRANGIAN CONTINUUM MECHANICS

The complete continuum equations for the time-development of the
hydrodynamic density p, velocity v, and energy per unit mass e include the
pressure tensor P and the heat flux vector Q. They can be expressed in
either the fixed-grid Eulerian form:

Op/ot= —V-(pv)
d(pv)/0t= —V - (P + pov)
d(ple+iv*])jot=—V-(pole+3v*]+v-P+Q)

or the simpler comoving Lagrangian form:

plp=—V-v
pv=—V.P
pé=—Vo:P—-V.-Q

We will assume the usual Newtonian and Fourier versions of the transport
coefficients, but with the special choice of bulk viscosity, 7, =(#/3). This
two-dimensional constitutive equation corresponds to the three-dimen-
sional choice #,=0.7

It is usual to evaluate all the necessary spatial derivatives in the con-
tinuum equations in terms of truncated centered-difference expressions,
either at the grid points or at zone centers located between the points, con-
verting all the partial differential equations for the evolution of the density,
velocity, and energy into finite coupled sets of ordinary differential equa-
tions. Fixed-grid FEulerian simulations with the velocity and energy
followed at the grid points and with density, stress, and heat flux followed
at the zone centers can provide “useful” (inexpensive and stable) solutions
to the Rayleigh-Bénard problem.”"®) This same two-grid approach can be
adapted to describe the equilibration of the highly nonlinear pressure
waves described in what follows. Our preliminary investigations showed
that the Eulerian simulations are unstable in the absence of dissipative
transport coefficients. We accordingly have added three small constant
transport coefficients to the centered-difference fixed-grid approximation to
solving the continuum equations. The effect of these coefficients vanishes in
the “continuum limit.” This limit can be achieved in either of two equiv-
alent ways: (1) by increasing the number of particles for a fixed system size,
or (ii) by increasing the system size for fixed particle size and mass.

Moving-grid Lagrangian simulations, with quadrilateral zones in two
dimensions, also require some viscosity for stability. Quadrilateral zones
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Fig. 1. Lagrangian 12 x 12 meshes after one “sound traversal time,” ¢ =7, both without (left)
and with (right) butterfly-hourglass control. The sound traversal time is based on the (maxi-
mum) sound velocity, unity: 7= L/c = L. Both butterfly and hourglass instabilities can be seen
within the lefthand mesh. The shading is used only to distinguish the zones from one another
and has no special significance.

are chosen in order to facilitate shear deformation. As a result, unstable
“butterfly” and “hourglass” modes, which can be seen in Fig. 1 (left), are
common hazards to Lagrangian simulations. These modes correspond to a
shear instability, with half of a zone undergoing positive shear and the
other half negative, with no resulting overall restoring force. The two mode
types—butterfly and hourglass—are linear combinations of one another for
small strains. These unstable modes require damping too. When both the
usual artificial viscosity and the additional butterfly-hourglass controls are
included, the Lagrangian approach can likewise provide useful solutions.

IV. IRREVERSIBLE EXPANSIONS

The confined free expansion which we studied previously® using con-
ventional smooth-particle SPAM, showed very rapid equilibration. An
expanding square of dense compressed ideal gas, confined to a larger
periodic square container, appeared to be close to an equilibrium state
after one or two sound traversal times. See Fig. 2. This qualitative visual
evidence was confirmed by quantitative studies of the evolution of the
kinetic and internal energies, as well as the entropy, for the expanding gas.
These simulations appear to be rather unrealistic—the particles pass
relatively freely through one another. Monaghan® had suggested a means
to avoid this problem, as described in Section II. Our own attempts to
solve this same periodic expansion problem with conventional Eulerian
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Fig. 2. Snapshots of a 16384-particle SPAM simulation of the equilibration of a discon-
tinuous ideal-gas density distribution. The individual particle locations are shown at times,
relative to the sound traversal time, of #/t={1/8, 1/4,1/2,1,2}. These data are from the
detailed simulation described in ref. 2.

fixed-grid finite-difference techniques failed. We therefore sought out a
different, but related, problem which would be accessible to all four
schemes, both particle-based and grid-based. We found such a problem by
eliminating the sharp discontinuities in the initial density profile.

All four numerical methods which we have considered are consistent
with the continuum evolution equations and stable for sufficiently small
perturbations from equilibrium. In order to compare the four techniques
we have chosen to follow the motion of a highly-nonlinear, but periodic
and continuous, density distribution, with the initial sinusoidal form:

p(x, y)=f(x) f(y)
f(x)=[1+0.9 cos(kx)]/1.9
0.0526 < f<1.0

where the constant k is (27/L) and L is the width of the periodic cell. The
density varies by a factor of 192=361: in the center of the periodically-
repeated cell it takes on the maximum value of unity; the minimum density
occurs at the cell vertices, 0.00277. In Fig. 3 (left) we show the initial
Lagrangian mesh corresponding to this density distribution. Each of the
zones shown contains the same mass. The initial condition for a smooth-
particle simulation is also shown in that figure (right).

Figure 4 details the evolution of the sinusoidal initial condition accord-
ing to the conventional SPAM algorithm. Just as before, the distribution
of the particles becomes fairly homogeneous after two sound traversal
times. In our earlier work'® we focused our attention on the increase in the
coarse-grained entropy density, s(e.q, p). We computed an effective internal
energy per unit mass, e.;, by using the smooth-particle weight functions to
compute the thermal velocity fluctuations,

2= <0y —v)?
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Fig. 3. The initial Lagrangian mesh for a 48 x 48 zone simulation (left). Each zone contains
the same mass. The initial arrangement of 64 x 64 SPAM particles is shown too (right).

Because such velocity fluctuations are not present in the conventional
Eulerian and Lagrangian methods which we use here, we have studied
instead the time evolution of the total kinetic energy. It is to be expected
that a part of the initial total internal energy,

Eo= Nm{e)>y= ” dx dy Lp*> = (L2/2)(1 + 0.405%)/3.61>
— (N2)(1 4 0.4052)/3.61 = 0.27341 N

will generate a variety of sound waves through the nonlinear convective
interactions. The ability to describe this process, over a period of several
sound traversal times, is a relatively severe test of the various algorithms
compared here. The Lyapunov instability of the SPAM algorithm and the
artificial viscosities in the other methods prevent the exact reversibility of
the evolutions.

Fig. 4. Snapshots of a 4096-particle SPAM simulation of the equilibration of a sinusoidal
ideal-gas density distribution. The individual particle locations are shown at times, relative to
the sound traversal time, of 7/t = {1/8, 1/4,1/2, 1, 2}.



Computer Simulation of Irreversible Expansions 321

N = 4096

0 50 100 150 200
time

Fig. 5. Time history (0 < ¢ <27) of the hydrodynamic (spatially-averaged) kinetic energy for
4096 particles. The ragged curve with the higher maximum corresponds to the conventional
SPAM algorithm. The smooth curve corresponds to Monaghan’s modification SPAM ;.

V. RESULTS

It soon became apparent that conventional SPAM blurs the
hydrodynamic flow field as the expanding parts of the flow penetrate into
the lower-density regions. The corresponding time history of the total
hydrodynamic kinetic energy, 3, 3({p>;<{v);), when fluctuations are
excluded, is the relatively ragged curve shown in Fig. 5. In the same figure
we display the corresponding kinetic energy using Monaghan’s modified

algorithm, discussed below.

Fig. 6. Snapshots of a 4096-particle SPAM , simulation of the equilibration of a sinusoidal
ideal-gas density distribution. The individual particle locations are shown at times, relative to
the sound traversal time, of 7/t = {1/8, 1/4,1/2, 1, 2}.
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The trouble with the conventional smooth-particle method is that the
boundary conditions are not implemented well. Particles pass through each
other. Monaghan suggested not only using an artificial viscosity, but also
the modified equations of motion discussed at the end of Section II. We
have implemented his idea, and the effect can be seen by comparing the
two kinetic energies shown in Fig. 5. Note that the “ringing” of the kinetic
energy is much more peristent with the improved SPAM,, algorithm. The
smooth-particle trajectories in Fig. 6 show that there is 7o interpenetration

Table I. Per-particle Kinetic Energy Maxima and Minima for the
Four Simulation Techniques Described in the Text
(Euler, Lagrange, SPAM, Monaghan)*

Type NorV I max Kimax I min Kinin
Euler(0.05) V=122 4.0 298 9.5 0.16
Euler(0.05) V=242 8.0 14.40 18.9 1.58
Euler(0.05) V=482 16.1 63.60 383 9.46
Euler(0.05) V=962 323 269.38 77.3 4422
Euler(0.05) v =1922 64.9 1113.66 155.0 190.08
Euler(0.10) V=122 3.7 2.26 9.5 0.02
Euler(0.10) V=242 7.7 12.18 18.6 0.56
Euler(0.10) V=48> 15.8 57.64 37.8 5.82
Euler(0.10) V=962 321 254.40 77.0 34.64
Euler(0.10) v =1922 64.7 1077.52 155.5 162.00
Lagrange V=122 2.7 4.13 8.0 0.38
Lagrange V=242 55 17.31 16.0 227
Lagrange V=482 11.8 70.71 323 11.15
Lagrange V=962 23.7 285.17 65.2 49.86
Lagrange V=1922 48.0 1145.32 130.0 216.10
SPAM N =322 19.9 104.78 477 6.38
SPAM N =642 39.1 442.60 932 37.22
SPAM N=1282 79.0 1800.22 195.2 175.98
SPAM N =256 158.8 7011.51 392.7 727.49
SPAM N=322 17.9 94.27 45.7 747
SPAM N = 64> 39.2 413.22 93.6 50.27
SPAM N=128% 79.8 1742.64 191.3 250.63
SPAM N =256 161.6 7164.72 388.3 1112.99

“The number of particles N or the volume F'=3.61N, and the time and size of the first
kinetic-energy maximum and minimum are given. The Eulerian transport coefficients
(7 =K =3ny) are given in parentheses. The Lagrangian viscosities and controls all take on
their conventional default values.
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with this algorithm. Compare Figs. 4 and 6. We carried out a few addi-
tional simulations replacing Monaghan’s “new” particle motion equations,

{};iz vitmy (v;=0,) Wlﬁ/'/pij}

J

with the simpler ones used in conventional Lagrangian simulations:

{fiE<U>(,~,)}

but retaining his linear and quadratic artificial viscosities. The changed
equations of motion made no significant difference to the evolution.
Eulerian equilibration simulations required a small nonvanishing
viscosity for stability, as explained in Section III. Once this was included,
the resulting kinetic energy histories approach the large-system (or small-
mesh) continuum limit, with deviations of order 1/L. This dependence is
quite apparent from the data given in Table 1. The linear extrapolations to

Fig. 7. Time histories of the kinetic energy K with L =48 according to conventional
Eulerian and Lagrangian continuum simulations with 0 <#<27=96. The Lagrangian curve
has the higher maximum. The Eulerian simulation incorporates a shear viscosity coefficient of
0.10.
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L — oo (or to zero mesh size with L fixed) all agree within statistical errors,
suggesting that this problem is well posed. The agreement with the
Lagrangian and SPAM,, extrapolations also suggests, with the exception
of the conventional SPAM algorithm, that the numerical approaches al/l
converge to the same solution as the resolution is improved. The Eulerian
and Lagrangian kinetic energy histories both appear in Fig. 7. Density sur-
faces at times corresponding to the first maximum and minimum in the
kinetic energy appear in Fig. 8.

Fig. 8. Density surfaces at times corresponding to the first kinetic-energy maximum (left)
and minimum (right) according to the SPAM y, algorithm.
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VI. CONCLUSIONS

Among the four techniques compared here, the smooth-particle algo-
rithm, Monaghan’s modification of it, and the Eulerian algorithm, are all
relatively easy to program. SPAM,,, with Monaghan’s special motion
equations and artificial viscosity included, does a very nice job of handling
the complex wave interactions generated by nonlinear convection. The
Lagrangian simulation, on the other hand, requires a significant program-
ming effort, and is accordingly somewhat more difficult to optimize.
Despite the three different Lagrangian viscosities used, with the recom-
mended values in each case, highly-compressed zones near the corners
exhibit unacceptable distortions. Because the pressure is quadratic in the
density, the resulting negative zone volumes do not lead to fatal
instabilities. The Eulerian technique, though well-suited to this symmetric
problem, would have difficulty treating more-complex flows. With the
exception of the conventional SPAM algorithm (with vanishing transport
coefficients), a/l the numerical methods just mentioned can be used to solve
this interesting problem. Among the various methods the Lagrangian
technique shows the least number dependence—and is thus the best tech-
nique for this problem—but at the cost of increased complexity in the
programming.
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