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The authors thermostat @p harmonic oscillator using the two additional control variabfesnd ¢ to
simulate Gibbs’ canonical distribution. In contrast to the motion of purely Hamiltonian systems, the thermo-
stated oscillator motion is completely ergodic, covering the full four-dimensignal, {,¢} phase space. The
local Lyapunov spectrunfinstantaneous growth rates of a comoving corotating phase-space hypersphere
exhibits singularities like those found earlier for Hamiltonian chaos, reinforcing the notion that chaos requires
kinetic—as opposed to statistical—study, both at and away from equilibrium. The exponent singularities
appear to have a fractal character.
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[. INTRODUCTION existence of several Lyapunov-stable regions surrounding
periodic orbits in addition to the unstable chaotic sea which
Nonequilibrium statistical mechanics is undergoing rapidcomprises most of the phase-space probability density for the
change, driven by computer simulation, witlhermostated, pendulum. The existence of the periodic orbits is strongly
time-reversible simulation techniques and nonequilibrium suggested by the Kolmogorov-Arnold-Moser theoréin.
boundary conditions suggesting novel theoretical analyseg.he complex structures of phase-space flows for conserva-
The classic backgrounfil], dating back to Poincarand tive Hamiltonian systems, like the pendulum, have been ex-
Lyapunov, is too closely tied to two-dimensional models andplored in great depth for a century. Some non-Hamiltonian
to Hamiltonian systems to provide an understanding of cursystems exhibit much simpler behavior which we believe to
rent nonequilibrium work. Nevertheless, notions from dy-be typical of nonequilibrium systems. In the present work we
namical systems theory—in particular the study of thestudy what we believe to be the simplest “ergodic”—
Lyapunov instability(exponential error growthce') of the ~ meaning covering the entire phase space—dynamical system
chaotic dynamics and the characterization of the fractal direlevant to statistical mechanics, an harmonic oscillator. The
mensionality of the resulting statistical distributions—haveoscillator is stabilized bywo thermostat-control variables, a
proved seminal in understanding the irreversibility of thegeneralization of the simpler one-variable Nd$@over con-
second law of thermodynamics in terms of an underlyingtrol. An alternative method of thermostating an harmonic
time-reversible, but non-Hamiltonian, dynam[&. oscillator, with quartic feedback forces, has also been inves-
There are two distinct approaches to solving thermometigated recently8,9].
chanical problems involving irreversible procesg@estrajec- The plan of the present paper is as follows: first, we in-
tory analysis based on time averages 4ingl phase-space troduce the doubly thermostated oscillator. Next, we study
distribution function analysis. The dynamical trajectory its ergodicity under the influence of simple quadratic feed-
methods have been employed ever since nonequilibriurhack forces. We then characterize its chaotic character,
methods were first developed, in the early 1970s. Dynamithrough the mean values and fluctuations of the local
methods are relatively simple to implement and to underLyapunov exponent§\}, and their associated offset vectors
stand[2—4]. More recently, statistical methods have been{s}. Finally, we list the conclusions to which we have come
applied to these same problems. The corresponding statistks a result of this work.
cal tools (such as maps, Poincasairfaces, periodic orbits,

and equilibrium escape rajesntail more formz_;ll structure Il. THERMOSTATED HARMONIC OSCILLATOR
and have a mathematical, as opposed to physical, orientation _ o )
[4-6]. Simulations of nonequilibrium systems require “thermo-

We abandoned our initial plan to study the chaotic Hamil-Stats” able to extract the heat generated by irreversible pro-
tonian Hookean pendulum problefi] when dynamical —cesses. Integral and differential feedback forces, usually of
tests, of the type described in the next section, revealed ththe form {p=—{p}, have been developed to satisfy this
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FIG. 1. Distribution of 1000 trajectory-averaged momefits, p?) on the left-hand side, an¢¢2,£2) on the right-hand side. Initial
conditions were chosen randomly within the four-dimensional hypereube {q,p,,£}<+1 with the trajectories followed for £aime
steps of length 0.01 each.

need[10]. In our work here, a conventional Hamiltonigm  ({g?,p?,¢?,£2}) with time, using an ensemble of 1000 ran-
oscillator interacts with a heat reservoir—represented by thdomly chosen initial conditions. The entire ensemble of av-

two control variables, or “thermostat variables{Z, &} erages converges to the expected canonical average, unity for
. _ _ _ each of the quadratic forms, with deviations of ortiet’? for
q=p; p=-q-{p; {=p*~1-¢¢ E=°-1. ({g%,p?,£%}) andt~! for (£?). Direct integration of they

Notice that the friction coefficiend is itself controlled by a and¢ equations, giving

second thermostat variablé, More-complex many-body Ag=t(p), A&=t[({A—1],
versions of this thermostating scheme were first introduced
by Martyna, Klein, and Tuckermai1]. establishes that the two averagép) and ({?), converge

The time evolution'of the trajectory motion can also berapidly, with linear corrections in 1t/ rather than the much
expressed as an equivalent phase-space-probability flow, larger “statistical” central-limit-theorem corrections of or-

terms of the probability densitf(q,p,¢,£): dert~ Y2 To see this rapid convergence it is only necessary
) that the sampling timé be long relative to the oscillator
f=(of/ot)+v -V, f=—1(V,-v)=1({+§), period of=27. Figure 1 shows the ensemble averages at
=10P, using 16 fourth-order Runge-Kutta time steps of 0.01
r={aq,p,Z,&; v={q,p,Z.&}. each. Any regions associated with periodic orbits, or parti-

tions of the occupied phase space into disjoint parts, would
In the steadyequilibrium) state, wheredf/dt) vanishes, the be revealed by persistent clustering, away from the full ca-
thermostated oscillator motion equations give the solutiomonical averages, in such ensemble plots.
corresponding to Gibbs’ canonical ensemble for an oscillator

at unit temperature: Ill. LOCAL LYAPUNOV EXPONENTS

f oquiibriun™ e (@ +p?+ 2+ 92 With the ergodicity of the oscillator motion confirmed, we
next studied the dependence of tloeal Lyapunov expo-
The form of this stationary distribution suggests an effectivenents, and their associated directions, on phase-space loca-

“Hamiltonian” H,: tion. These “local,” or “instantaneous,” exponents describe
the linear deformation of a comoving corotating phase-space
He=(0?+p®+ >+ £2)/2. hypersphereat the location{q,p,,&} where the exponents

are evaluated?2,3]. In general, they depend upon the past
The strong mixing properties induced by the quadratic forcesiistory of the system, as opposed to the future. Hamiltonian
in the equations of motion cause changes in the numericalystems behave in a much simpler way, as a consequence of
value of H, as time goes onH,=—{— &, so that all the their symplectic naturéwith symmetric contributions from
“energy shells” of constantt,, with 0<H.<w«, are in- the past and futuje The Hamiltonian exponents obey an

cluded in the resulting distribution. instantaneous pairing rule, with each positive exponeit
It is remarkable that the entire canonical distribution“paired” with its opposite negative exponent,
eventually results fronany smooth initial choice forf. In —X\ [1]. The thermostated oscillator displays a much richer

previous work this fact was inferred from a study of long- variety of behavior, typical of nonequilibrium systems. The
time Lyapunov exponenig@verage rate of divergence of two four local Lyapunov exponenfa\} ={\{,\»,\3,A4}, Where
nearby phase-space trajectojieslere we have confirmed the subscripts indicate the orddargest to smallegtbased
this finding by studying the convergence of the averagesn long-time averages,
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FIG. 2. Variation of the localinstantaneoysLyapunov exponents(6) along two circles in phase space. At the left bqtand ¢ are
0.1 cosd while p and ¢ are 0.1 sird. At the rightg and —p are —0.1 sind while { and — ¢ are — 0.1 cosé. In both cases the phase-space
location parameteé varies from— 1 to + 7. Each of the 16 points represents a reversed trajectory df tifie steps wittdt=0.001.

(N> (o) =(N3)>(\y), ing each of the corresponding sets of four “satellite” trajec-
toriesforward in time, with the four vectors
have instantaneous fluctuations an order of magnitude larger
than the long-time-averaged expone(X;). The time- 16=(0,P. ¢, E)satelite™ (0, P, £, reerence

averagedexponentslo satisfy a pairing relation: . . . .
g P ° fyap 9 constrained to remain orthogonal, with a fixed length of

_ _ _ _ 0.00001 or 0.000001. The constraints were imposed by res-
(+11)=0.066=(=As),  (+12)=0.000=(~13). caling, as originally suggested by Benetfih?] following
related work carried out by Stoddard and Ffitd]. The rate
of rescaling of the vector lengtfs}, on reaching the initial

A+ Aot Nathg=—C—§&, conditions once more, gives the local Lyapunov spectrum.
The directions of the vectors are those of a comoving coro-
which follows from the equations of motion. There is no tating hyperellipsoid’s principal axes, with the four-
simple identity linking the separate pairs\;(A,) and dimensional hyperellipsoid centered on the reference trajec-
(\2,\3). Because the fluctuations in these local instantafory. The results of the local-exponent analysis, for two small
neous exponents are so large, accurate calculations of thePiase-space circles centered on the origin, are shown in Figs.
require a somewhat shorter Runge-Kutta time i@po:]) 2 and 3. The angle <0<+ 1 there parametrizes the cir-
than do the averages discussed in the last section. cumference of the phase-space circles. Figure 2 suggests that
We found that not only did the four local exponents ex-the variation of the largest Lyapunov exponent is singular in
hibit all possible (2=16) sign combinations—of which a the phase space. In the next section we investigate this sin-
paired Hamiltonian system could have only four—the fourgular variation in detail. The behavior of the other exponents
exponents also could appear, locally, with all possible (4!
=24) orderings, while a Hamiltonian system could have
only eight of these. The observed orderings of the thermo-
stated oscillator’s exponents include even the most extreme
fluctuation, with the instantaneous exponents reversed:

The instantaneougxponents only satisfy the identity
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Likewise, locally, the exponents cafl be positive orall be f; Bl i
negative, for a short while. These features suggest that the ) A
dynamical view of fixed stable and unstable manifolds sug- &L
gested by the study of two-dimensional hyperbolic maps
[1,5,6], cannot be applied to the present relatively simple okt i §
four-dimensional situation. 10 o/
Figure 2 indicates that the spatial dependence of the
Lyapunov exponents is wildlgingular, just as was the case FIG. 3. Variation, in the¢ direction, of the projections of the
for the Hamiltonian systems studied earl[&]. The figure  eigenvector corresponding to the local Lyapunov exponents
was generated bf) integratingbackwardin time from a set  {x,(6)} with q=p=0.1coss;, {=¢=0.1sin6. The parameter
of 10 000 equally spaced initial conditions, saving the resultvaries from — to + . Because thesign of the projections is
ing four-dimensional “reference” trajectoriesii) integrat-  arbitrary, both the positive and negative choices are shown here.
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is similar. Figure 3 shows that the projections of the
principal-axis vectors are likewise singular. We used fourth-
order Runge-Kutta integration throughout, choosing the
timestep small enough that errors from the numerical inte-
grator were dominated by those from the finigouble-
precision) computer word length. Although generalized sym-
plectic methods might appear to offer advantages for such
studies we were unable to develop an approach subject to the

“I'n(< ZA >)

40

instantaneous constraint which follows from Liouville’s
theorem,

=—f(V,-0)=f({+§).

IV. SPATIAL FLUCTUATIONS OF THE LYAPUNOV
EXPONENTS

The look of the wildly fluctuating local Lyapunov expo-
nents is reminiscent of “fractal” curvescurves of ‘“un-
bounded variation). To check the validity of this idea we

have studied the dependence of the summed-up vertic%

jumps of the curve,

AN =N g+ (s02)— No—(s0i2)|)»

as a function of the coarsening interw® separating adja-
cent phase-space sampling points.
double-precisior(14-digit) arithmetic, because two separate
differencing operations are requirg@: analyzing the offset,

of order 10°° or 10 ®, between the reference and satellite

trajectories andii) analyzing the dependence of these small

differences on similarly small changes in the initial condi-
tions. We were able to study samples of 80000 initial con
ditions, all of equal Gibbs’ measure, lying on a circle in the
four-dimensional phase space. The results show that over
1024-fold change in interval length,

(247)/80 000< 56=< (21177)/80 000,

the jumps{A} in the local values of\; vary roughly as a
fractional power of the interval lengi$é. The data shown in

Fig. 4 indicate a “fractal dimension” near 1.7, suggesting an

underlying simplicity in the chaotic structure. It is interesting

1.0

0.0

FIG. 4. Interval dependence of the summed-up vertical jumps
(analogous to the “length” of the fractal lineas a function of the
interval between successive poidig, using up to 80 000 points on
the phase-space circle withand{ equal to 0.1 cog while p and ¢
e 0.1sir. The slope of this double logarithmic plot, 0.69, indi-
tes that the “line” corresponding to the data shown at the left in
Fig. 2 has an effective “fractal dimension” of 1.69, rather than 1.0.

Nevertheless, the dynamics faithfully generates the simple
smooth Gibbs’ distribution characteristic of the canonical en-
semble. This oscillator model, and its properties, suggest that

It is necessary t0 U$fe smoottime development of trajectories, rather than the

irregularspatial structure of distributions, is the more fruitful
route toward theoretical understanding of chaotic systems.
Whether or not a generalization of the symplectic integra-

tors, satisfying the local constrairft=f({+ £), can be found
for this simplest of ergodic chaotic models, remains an inter-

esting open problem. The present work suggests a variety of
investigations designed to classify possible forms of the
phase-space dependence of local Lyapunov spectra. The ex-
tension of these results to nonequilibrium systems is compli-
cated by the lack of a useful Gibbs’ measure away from
equilibrium. For nonequilibrium systems it is tantalizifigl]

to try to express phase-space measures in terms of local
Lyapunov spectra. Corresponding approaches can be readily
tested with the present model. In the equilibrium case, with
kT=1, there is an exact relationship,3]:

to find traces of fractal character, usually associated with

dissipative systems, at equilibrium. This is reminiscent of the

equilibrium fractals found in the “escape-rate” theory of
transport developed by Dorfman, Gaspard, and Nid@l]s

V. CONCLUSIONS

dinf/dt=2, —\={+&—f(1)/f(0)=e* o

= eHe(O)_He(t) s

where ({+ &) gives the dissipationime-averagedover the
time interval from 0 tot. The nonequilibriumcase could be

The thermostated oscillator, despite the simple analyticexplored by making the imposed mean kinetic temperature
though nonlinear, nature of its quadratic forces, exhibits dy{T)=(p%/mk) an explicit function of the coordinatg[2,9].
namical variety far beyond the capability of analytical meth-off hand, it appears that the fractal character of the spec-

ods, with rapidly changing directions for thé} and rapidly
changing magnitudes of the local growth rafa$. The nu-

trum’s spatial dependence will present insuperable difficul-
ties for these formal phase-space-measure approaches.

merical data considered here suggest that the spatial depen-

dence of the local Lyapunov exponents is fractal, with a
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