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The dynamical instability of many-body systems is best characterized through the time-dependent local
Lyapunov spectrum\ j}, its associated comoving eigenvectpss}, and the “global” time-averaged spectrum
{(\j)}. We study theluctuationsof the local spectra as well as thenvergence rateandcorrelation functions
associated with thé vectors as functions gfand system sizhl. All the number dependences can be described
by simplepower laws The various powers depend on the thermodynamic state and force law as well as system
dimensionality.
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[. INTRODUCTION present work—the initial choice becomes irrelevant, and the
results for different choices all come to agree at sufficiently
Since dynamical instabilities are quantified by the time-long times. The detailed time dependence of the convergence
dependent local Lyapunov exponefil} [1,2] and because to unique orientations can be described by correlation func-
these quantities are, in favorable cases, simply related to tH&ns defined and characterized in the work that follows. The
thermodynamic entropy producti¢8,4,5], there is consider- time-dependent “converged orientation” of the volunig
able interest in their accurate characterization. The simpledtas to be found by following the evolution p# 1 neighbor-
way to visualize the local and globaltime-averaged ing trajectories for a sufficiently long convergence time.
Lyapunov exponents is to imagine the deformation of an One might expect—neely as it turns out—thaw ,, for
infinitesimal j-dimensional volume®; in N-body phase instance, will turn into the direction of the fastest growth
space. The phase-space volunjes} are all “comoving,”  exponentially fast as
centered on an evolving trajectory that obeys the usual equa-
tions of motion. The instantaneous and the time-averaged et =1\
. y T 1-
rates at which the volumes grow or decay,
{®j /®;} and {<®j 19)}, Instead, we are able to argue, and confirm, that correlations
appear at a rate determined by thiéferenceof the first two
define thesumsof the firstj local and global Lyapunov ex- Lyapunov exponents;—\,. The directional error i, de-
ponents, cays roughly as +e 4" whereAN=\;—\,. We explore
and evaluate possible generalizations of this idea to the re-
i j mainder of the spectrum. We find, in fact, that the detailed
> \N=®;/®;; > (\)=(®;/®)). convergence of the orientations is a relatively slow, and
=1 =1 highly number-dependentr¢NP), collective phenomenon.
) ) . For N-body systems with continuous force laws, such as
For instancer, describes the instantaneous stretching  the soft disks and soft spheres described in Sec. I, numerical
shrinking rate of aline joining two nearby trajectories)1)  investigations of Lyapunov spectra require computational
is the long-time-averaged value of this quantity;+ X\, de-  \work of orderN® or N4 per time step, with the power law
scribes the growtkor decay rate of anareadefined by three  gepending on the chosen algorithm. The first numerical
nearby trajectories, etc. Note that the local Lyapunov expomethod to be discovere®,7], with work «N3, is still the
nents are well defined point functions in phase space. one most commonly used. It relies on frequently repeated
It is apparent that the local growth rate&\i<j  Gram-Schmidt orthonormalizations in the phase space.
=®;/®; depend on theorientationsof the corresponding These orthonormalizations rescale, rotate, and orthogonalize
j-dimensional volumes ilN-body phase space. Because thea set of offset vectors that link a “reference” trajectory to
initial choice of such volumes is arbitrary it might appearnearby “satellite” trajectories. Together, these satellite trajec-
that the local growth rates are ill defined. But after a “con-tories span a small phase-space neighborhood of the refer-
vergence time”r—which we define and determine in the ence trajectory.
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Hoover and co-workers discovered an elegant Lagrange 4 — T
multiplier method[3,4,8| that prevents the growth or decay
of the offset vectorqd;} while automatically incorporating
the proper rotations of these vectors to maintain their or- 3D
thogonality. The Lagrange multiplier method corresponds to I
a continuous(rather than frequently repeajedrthonormal- < 2} oD .
ization applied as a constraint on, rather than a correction to,
the Hamiltonian motion of th¢ satellite trajectories, which
define 6 vectors spanning the hypervolune, . This con-
straint method, combined with additional small-scale Gram-
Schmidt orthonormalizationdo alleviate the small remain- o T S S
ing errors due to computer roundpfprovides the best 0 0.2 0.4 0.6 0.8 1
possible means for an accurate computation of the spectrum. i/DN
The Lagrange multiplier method consumes computer time FG. 1. Spectrum of time-averaged Lyapunov exponents for 256
proportional toN*. Despite the disadvantage of increasedsoft disksithe data for 1024 show no noticeable differencesd for
computer time, we adopt this method here in order to opti4125 soft spheres. In both cases the largp—D—1 of the
mize theaccuracyof our results for continuous soft-disk and 2DN—2D —2 nonvanishing exponents are shown.
soft-sphere systems.

Hard disks and spheres, for which the main contributionseparated by less than unit distance interact with each other
to the Lyapunov exponents are singular ones, occurring according to the short-ranged pair potential,
each successive two-body collision, require special methods
[9-11]. Without taking special precautions, such as neighbor
or cell lists, the computational cost of integrating a single
trajectory for particles with hard elastic collisions scales as
N2. In addition, the calculation of Lyapunov spectra requiresin three dimensions we use cubic systems, with exactly the
the integration of the equations of motion of a complete sesame pair potential and with periodic boundary conditions.
of infinitesimal displacement vectoi . In both two and three dimensions we vary the total number

Because irD dimensions each of these vectors h&s\2  of particlesN, keeping the number density, the mass per
components and the total number of collisions per unit timeparticle, and the total energy per particle all equal to unity.
is proportional toN, the CPU time required to follow the Thus the soft-particle systems studied here all correspond to
dynamics of all DN & vectors is of ordeN®. The number  dense fluids.
of operations required to carry out a Gram-Schmidt orthonor- In the two-dimensional thermodynamic equilibrium state
malization is of the same order. In a typical calculation of athe time-averaged potential energy is about 30% of the total
Lyapunov spectrum for a hard-particle system approximatelgnergye=® +K,
equal amounts of CPU time are expended for Gram-Schmidt
orthogonalization and propagation of dlvectors. In gen- (®/N)=0.30; <_> :<I0_> ~0.70
eral, the integration of a hard-sphere trajectory can be carried 7N 2m o
out with considerably higher efficiency than a trajectory for a
system with continuous interactions. When, however, Gramin three dimensions the potential energy is about 25% of the
Schmidt orthonormalization becomes the dominant factortotal. An effective hard-particle collision diameterfor the
the computational effort required for the calculation of soft particles can be estimated by considering the line-of-
Lyapunov spectra in systems of hard and soft spheres is @fenters turning-point energyk2 for a typical thermal col-
the same order. lision,

We apply the Lagrange multiplier method here to many-
body systems of soft disks and spheres in a dense-fluid ther-
modynamic state. We establish the rates of convergence of
the local exponents and their correspondihgectors. The
soft-particle systems chosen for investigation are described 4K s
in Sec. Il. We carry out analogous simulations for systems of d(o)= ZkTZ(ﬁ) —>UD3:0-827( N) :
hard disks and hard spheres. These hard-particle systems are
described in Sec. lll. Calculations for both the soft and the Apart from 2D +2 Vanishing coefficients, which corre-

hard particles, followed by our conclusions, based on comspond to constants of the motidi8,14], the long-time-
paring them, make up the balance of this work. averaged Lyapunov spectrum for the soft-disk equilibrium
state is a well-known featureless continuous curve, illus-
trated in Fig. 1. The soft-sphere spectrum—a sample is
shown in the same figure—is very similar. The largest of the
2ND— (2D +2) nonvanishing Lyapunov exponentsy,),

We continue here our study of square parallel systems adefines an effective “collision rate” or “bifurcation rate” for
soft-disk fluid[12-15. In all these systems any two disks these systems.

(r<1)=1001-r2% =2 ¢(r;).
i<j

2

2K 1/2

Il. SOFT-DISK (D=2) AND SOFT-SPHERE (D=3)
MANY-BODY SYSTEMS
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For all the two- or three-dimensional soft-particle systems
we use the classic fourth-order Runge-Kutta integration
[3,4,14 algorithm. For the work described here, accurate re-
sults are obtained with a time stefp=0.002. The resulting
single-step integration error for sufficiently smooth solutions
is of orderdt®/5!=10"1° about the same as the computa- <
tional roundoff error. Such precise convergence can be easily
spoiled by force functions with low-order discontinuous de-
rivatives. Consider, for example, the Weeks-Chandler-
Andersen potential, with forces that vanishearly at the
potential cutoff. Integrating the differential equation for the 0 -

momentump, p=F, for a time step during which the inter- 0 02 0'4i / DNO.S 08 !

particle forceF(r=1) enters(or leave$ the interaction re-

gion, incurs a coordinate error of ordeF[r=1 FIG. 2. Spectrum of time-averaged Lyapunov exponents for 256
—(pdt/m)]dt?/medt® rather thandt®. In the present work hard disks and 256 hard spheres. In both these cases the largest
we use forces that incur force errors that amebic in DN—D-1 of the DN—-2D-2 nonvanishing exponents are
(pdt/m), with corresponding coordinate errors thatintic ~ shown.

in dt. Thus our errors from force-law singularities do not ] ) ] )

exceed the inherent Runge-Kutta numerical errors, which ar@r®¢ Well defined for systems with smooth interactions, the

. 2 . B
themselves at the level of computational roundoff errors. ~ fluctuations((x(t.t,) —(\))?) diverge, as 1, as the win-
dow timet,, approaches 0.

The most positive halves of Lyapunov spectra for hard
lll. HARD-DISK (D =2) AND HARD-SPHERE (D=3) disks ©=2) and hard spheresD(=3) appear in Fig. 2.
MANY-BODY SYSTEMS Both numerical[10] and theoretical11] results indicate that
for N— Lyapunov spectra converge towards a finite ther-
modynamic limit. The conspicuous gap between zero and the
mis the particle masgunity for convenience o is the par- first nonvanishing Lyapunov exponent, which is absent in
systems with smooth interactions, vanishes in the likit

ticle diameter, anE=K is the total(kinetic) energy of the " w vielding a spectrum approaching zero with infinite slope
system. Periodic boundary conditions apply. The only rel- y gasp PP 9 P

evant parameter is the densjpy=NnVV=N/V, whereV is (171
the volume(area, in two dimension®f the simulation box.
For our hard-disk simulations we use a box with an aspect

ratio of 2A/3 commensurate with the lattice structure at close The phase space for all of obkbody D-dimensional sys-
packing. In three dimensions our simulation box is cubic. Alltems is ND dimensional so that the complete Lyapunov
simulations are carried out at densities corresponding to gpectrum consists D “pairs” of exponents+\. TheND

dense fluid. pairing relations,
For the calculation of full Lyapunov spectra, the time evo-

lution of a complete set ob vectors must be determined. (Nj*Aonp+1-)=0,
Between collisions, the smooth evolution of t@evectors o ) )
can be calculated analytically. The vectors change abruptly &€ consequences of the underlying time-reversible Hamil-
collisions. Appropriate collision rules for the evolution of the tonian mechanics.
8 vectors in tangent space can be derived from a collisional One might expect that the largest Lyapunov exponept,
approximation which is linear in both the time and the phaseWould converge, very roughly speaking, with an error of or-
space coordinatd®]. Periodically the system of vectors is ~ der e 2. The second-largest exponent would likewise
orthonormalized and the Lyapunov exponents are obtained &onverge, but more slowly, with an error of order2), if
time averages of the growth rates of theectors. The larg- its convergence is essentially independent of the larger expo-
est Lyapunov exponent, for instance, can be written as nent(\,). Alternatively, the second exponent might have to
wait for the convergence of the first, leading to a longer
n estimate for the convergence time,

In all our systems with impulsive disk or sphere elastic
collisions time is measured in units ofg2N/K)Y?, where

IV. CALCULATIONS AND RESULTS

1
M= 2 syt t) =t t), = (L)) + (1)),

For a spectrum that approaches zero smoothly, as do the
wheres,(t;,t,) is the length of delta vectof; just before spectra for soft disks and spheres, this latter point of view
the ith orthonormalizationt,, is the timewindow between suggests, evidently correctly, dgivergenttime for conver-
orthonormalizations andt,, is the total simulation time. The gence as the system size increases. It is a major focus of the
above equation defines a “local” Lyapunov exponentpresent work to determine how the convergence times and
N (tt)=Ins(tt,)/t, averaged over time,,. While the fluctuations of the Lyapunov exponents vary with the ingdex
fluctuations{(\ —(\))?) of the local Lyapunov exponents and the number of particles.
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FIG. 3. Time evolution of §}- 57} for 64 soft disks. The dot
products link corresponding members of two sets of 32 orthogonal FIG. 4. Number dependence of the convergence of 16 orthogo-
vectors, kj<32 initially chosen randomly. Completely uncorre- Nal phase-space vectors. The time at which the sum first reaches
lated orthogonal vectors correspond to a vanishing dot producpalf of its long-time value is plotted as a function of the number of

while completely converged dot products have either of the value§articlesN. The points correspond to systems of up to 1024 par-
+1. ticles in two dimensions and 1000 particles in three dimensions.

The filled symbols refer to soft-particle results and the empty sym-

There are many ways, different in detail, to assess th&ols _r_efer to hard-parti(;le r_esults. For the har(;-particle results the
convergence rates @ or of the entire spectrum. A glimpse densities werg=0.80 (d's"?aandpzo'%" (spherek The
of the complexity such assessments could describe can [f@NVergence times grow a¥l , where a~0.4 (disk9 and «
gleaned from Fig. 3, which shows a typical time develop-(gohzertg?;risztorE;zzljesamc'es and:~0.8 (disks and «~0.9
ment of 325-vector dot products. The vectors chosen for the P P '
computation come from the two independent orthogonal sets ) )
“1” and “2.” Corresponding vectors(those describing the In @ time of orderN®, where« lies between 0.Zfor hard
same Lyapunov exponent, one from each aet multiplied: sphere}s and 0.9'(for spft ones. 'The time is significantly
{8} 57}. The dot products shown in the figure correspond tgonger in three dimensions than in téhough the Lyapunov
the 32 largest Lyapunov exponents in a 64-disk system. Nogxponents are similar In_ all cases, the convergence time
tice that the time required for the first dot prodLﬁJ{t- 5; to increases W|_th system size, adractional power somewhat
reach unity is of order 90 for a 64-particle systemany less than unity.

orders of magnitude larger than the straightforward guess In our prell'mlnary exploratorgoft particle wor.k we were
0.3=1/(\,). surprised to find that the full sets of vectors fail to converge

without specially matching the vectors corresponding to the
_ constants of the motion. Evidently the differing
A. Convergence fimes curvatures—as well as differences in phase-space flow
The long times required for convergence of the full set ofvelocities—on the energy surfaces of the satellite trajecto-
vectors suggest a more modest goal—quantifying the corries, are responsible for differences in the local values of all
vergence of the vector associated with the largest Lyapunothe negative-exponent vectors. By imposing constraints iden-
exponent. This problem is feasible for system sizes up tdifying the corresponding vectors from the two sets, the
about 1000 particles. Because convergence depends on thervature and velocity differences could be eliminated with
initial conditions, it is evident that sonaeragingprocedure  the result that all the remaining vectors coincide in pairs at
must be part of any accurate assessment of the number deng times. The corresponding convergence times for the
pendence. Here we average by first choosing 16 orthogongbmplete set ob vectors are very similar to those found for
phase-space vector{gﬁ, o 516} We then follow the sum the positive-exponent vectors alone or for the negative vec-
Syot Of all their dot products,
TABLE I. Soft-disk convergence times for theN2-3 positive

2 Lo D Lyapunov exponents and théN2- 3 negative Lyapunov exponents
Saot= 78 E E o1 5]11 for independent sets af vectors. In calculating the negative expo-
15X16i:1]':i+1 p . ¢} d p

nents all thes vectors for non-negative exponents were identical in
the two sets. The data represent average convergence times for as

in time. From the initial value zero, the sum will eventually .
pany as 100 different sets of vectors.

increase to unity. We tabulate the time at which the sum firs
reaches half of that value;, and repeat this process ten

times to improve the statistics. The resulting relaxation or N () {r-)
convergence timeSr(N)} are displayed in Fig. 4. 4 1.58 0.58
The convergence times vary sufficiently regularly as to 9 7.14 6.18
suggest the form of the large-system behavior. See again Fig. 16 15.77 13.72
4. 7(N) increases strongly, but not quite linearly, with A 25 26.56 25.98

rough description of these results is that the vectors converge
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FIG. 5. Correlation functions 4(cos(@)) (see Sec. IV B for
initially random & vectors as a function of\;—X\,)t. The solid
lines indicate results obtained for different particle numbers at vari-
ous densities for hard and soft disks and spheres. The dotted line
indicates the results of the simple theory presented in Sec. IV B.
Rescaling time by the difference between the two largest Lyapunov
exponents makes all the numerical curves essentially identical. The
Lyapunov exponents required for such a rescaling were obtained in
separate simulations.

tors alone with the non-negative ones constrained to match.

For example, soft-disk numerical values for these two 0 20 40 60 80

choices are given in Table I. We found that hard-patrticle i

systems behave in a simpler way, with a pairing of exponents : :

unaffected by the constants of the motion. Evidently the, FIG. 6. rll‘yng'_”?(v spectra and ZO"ESpOEd";g C?]nvergence times

purely kinetic energy of hard particles simplifies the conver- or N=36 hard dis stop p_ane) apz N_SZ_ ar ,Sgp ereGbOFtom

gence. pane). The _densmes werp—O._&r_ andp=0.80"", respegt_lvely,
corresponding to a dense fluid in both cases. Only positive expo-
nents and corresponding convergence times are shown. The relax-

B. Correlation function for & vectors ation times for conjugate pairs of exponents are identical.

The form of the correlation function describing the con- ) . ) o )
vergence of an arbitrarg vector to the direction described Exactly this same differential equatigwith this same solu-
by 8, can be estimated by ignoring the contributions of thoseion) results from Moran and Hoover’s analysis of the two-
Lyapunov exponents smaller than the largest two. If we usélimensional isokinetic Galton board problg®]. The anal-
&) and s, for the components of an arbitrafyvector paral- 09y between thermostated momenta and constraided
lel and perpendicular td;, the equations of motion for the vectors is in fact precisely what led Posch and Hoover to the

0 ° 1 1 1 1

The analytic result for thelot-product correlation func-
5“:)\15”_)\5“; S, =N28, =\, , tion, 1—cos(@) is shown as the dotted line in Fig. 5. The

dot-product correlation functions obtained numerically for
where the Lagrange multipliex maintains the total length hard spheres and hard disks at various densities and particle

5ﬁ+ 5551, numbers are shown as a heavy line, the superposition of all

the separate data. The simple analytical result reproduces the
A= 5ﬁ>\1+ 55)\2_ convergence time approximately, but clearly differs in shape

from the numerical results.

The time dependence of the dot produtts;=cos() fol- It is remarkable that scaling of time byAlX yields es-

lows from the differential equation for the angle sentially identical curves for all conditions. This result indi-
cates that the differencAN between the largest and the

6= — A\ sin(6)cog 6), second-largest exponent determines the time required for the

relaxation ofé vectors, as predicted by the simple consider-
whereAN=\;—\,. To solve the equation, note the identity, ations presented above. The curves shown in Fig. 5 can be
described quite well with either of two analytic approxima-

(d/dt)Intan( ) = 6/[ sin( 6)cog 6)]. tions,
Thus the# equation has the simple solution f(x)=al/(b+e”),
tan( 0) =tan 6p)e M. f(x)=ae P*+ce 4PX
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vV 100 1 20 8 m 3D, soft
0 1 1 1 1 0 1 1 1 1 g 101
=] B 4
20 ———— ———— £
c
~, 15 L 2D, N=256 3 2D, N=1024
<
v 0
| 10 x| L L
A 10 10 10
S N
0 ) \ \ . 0 . . X , FIG. 9. Number of particles contributing & by more than the
0 02 04 06 08 1 0 02 04 06 08 1 average as a function of particle numidéfor a variety of different
80 T T T T 20 T T T ; systems. The straight lines fitted to the data indicate that the number
N 3 3D, N=27 1 3D, N=125 of contnbut_ors increases as a power of the number of particles with
A B0F 1 17T exponents in the range from 0.57 to 0.97.
\Z
I 40
‘“(2 1 a_1ft,
J— ! ! J— ’ !

0 1 1 1 1 0 1 1 1 1
° 02 O{A} D%G 68 1 0 02 Oi"} D&s o8 1 Our goal here is to characterize the variation of these fluc-
tuations with the exponent indgx See Fig. 2 for the time-
FIG. 7. Mean square fluctuations of the Lyapunov exponents foyeraged spectra and Fig. 7 for the fluctuations. The data
16, 64, 256, and 1024 soft disks and for 27 and 125 soft spheregadicate power-law dependences of the spectra, as is de-
Fluctuations for the negative exponents are identical to those for thgcrihed in more detail below.
positive exponents shown here. For simplicity we confine our analysis here to the largest

. ) . ) Lyapunov exponenk 4, and its fluctuation,
wherex is a dimensionless time,=ANt. We have no theo-

retical justification for either form. Relaxation times for com- F=((A—(A1))?).
plete sets of hard-disk and hard-sphéreectors are plotted ! !
in Fig. 6, along with their corresponding Lyapunov expo-

nents In both two and three dimensions these fluctuations converge

much more rapidly than does the dot-product correlation
function discussed in Sec. IV B.
C. Number dependence ofA;) and its fluctuation The log-log plot in Fig. 8 shows fluctuations fadx

_p2a2 : : : :
For the soft particles, we have also computed the meam 48 12, ...,32 particles in two dimensions antl

_—_n3 23 43 H H H
values and théluctuationsin the local Lyapunov exponents —2 13 4% ... '16_ in three dimensions. The three-
by computing corresponding long-time averages: dimensional data indicate that the fluctuations vanish as

N 986 while the two-dimensional data show a considerable

, , , curvature. This curvature indicatesresidual fluctuationin
N1, which persists in the large-system limit in two dimen-

10° | o 20 7 sions. If a constant is subtracted from the two-dimensional

fluctuations, the data then become consistent with the power-
law relation:

o5 ouncorrected (f_ 16) N 70.84_
° 5o
Similar persistence of fluctuations of local exponents has

been recently observed in one-dimensional lattices of

1(')1 1(-)2 1(-)3 coupled logistics mapfL8].

N

) D. Number dependence of contributors tod;
FIG. 8. Mean square fluctuations of the largest Lyapunov expo-

nent for series of soft-disk and soft-sphere systems. The curvature The maximum Lyapunov exponent has been observed to
in the two-dimensional fluctuations can be removed by subtracting© correlated with spatially localized trajectory perturbations

a constant. This indicates that the two-dimensional fluctuations d§13]. To investigate this localization phenomenon further, we

not vanish in the large-system limit. computed the number of particles contributingdg the §
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vector associated with the largest Lyapunov exponent. Morexponents is slow to converge, as might be expected for a
precisely, we have determined the number of particles focollective phenomenon linking all the particles in a many-

which theith contribution body system.
) ) ) 5 So far very little is known about the mechanisms govern-
Ci=6Xi'+ oy; + opy i+ opy ing convergence. Existing theoretical effof30,21] point

, out possible approaches, but have so far been unable to dis-
is larger than the average valueN1/In all cases we have tinguish the dependence of Lyapunov spectra(iomphase,
found that the average number of such particles grows morg; )" gimensionality, andiii) strength of the pair potential. It
slowly than linearly, indicating that, in the limil—<, a s yery gratifying that a single universal form appears to

vanishing fraction of the particles contributesdp This IS gegscribe both the soft and the hard-particle correlations, both
quite consistent with existing results for hard disk and dumb;,, two dimensions and in three dimensions.

bell systemd19]. As shown in Fig. 9 for a variety of soft-
and hard-particle systems, the number of contributors grows

asN¢, where the exponent depends on the dimensionality, ACKNOWLEDGMENTS
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