
ar
X

iv
:1

50
7.

08
30

2v
4 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

3 
A

ug
 2

01
6

Nonequilibrium Systems : Hard Disks and Harmonic

Oscillators Near and Far From Equilibrium

William Graham Hoover and

Carol Griswold Hoover

Ruby Valley Research Institute

Highway Contract 60, Box 601

Ruby Valley, Nevada 89833 ;

Julien Clinton Sprott

Department of Physics

University of Wisconsin - Madison

Wisconsin 53706 .

(Dated: August 24, 2016)

Abstract

We relate progress in statistical mechanics, both at and far from equilibrium, to advances in the

theory of dynamical systems. We consider computer simulations of time-reversible deterministic

chaos in small systems with three- and four-dimensional phase spaces. These models provide us with

a basis for understanding equilibration and thermodynamic irreversibility in terms of Lyapunov

instability, fractal distributions, and thermal constraints.

PACS numbers:

Keywords: Chaos, Ergodicity, Thermostats, Reversibility

1

http://arxiv.org/abs/1507.08302v4


I. INTRODUCTION

Nonequilibrium Molecular Dynamics and Dynamical Systems Theory have been our main

research interests for about 50 years, the same period over which Moore’s Law has described

the growth of our primary tool, computation. In 1959 thermodynamic information was

mainly gleaned from series expansions of pressure in powers of the density and integral

equations for the pair distribution function. That was the year when Berni Alder and Tom

Wainwright described a new simulation method1 now called “molecular dynamics” in their

prescient Scientific American article “Molecular Motions” :

“One of the aims of molecular physics is to account for the bulk properties of

matter [ pressure P , temperature T , energy E, . . . ] in terms of the behavior of

its particles. High-speed computers are helping physicists realize this goal.”

At that time simulating the motion of a few hundred particles presented a computational

challenge. Today’s biomolecule simulations model at least many thousand and perhaps a few

million atomistic degrees of freedom. After several Nobel prizes2 this molecular dynamics

method is familiar textbook material while the virial series for the pressure and the pair-

distribution integral equations keep company with the dinosaurs.

During this same period our understanding of dynamical systems ( flows described by a

few nonlinear ordinary differential equations ) has undergone explosive growth. Ed Lorenz’

three-equation Butterfly Attractor is a clearcut demonstration of “chaos”, the exponen-

tial “Lyapunov instability” often found in systems of three or more ordinary differential

equations. The Lyapunov spectrum of exponential growth and decay rates provides a topo-

logical description of evolving phase-space densities. The discovery that time-reversible flow

equations can describe irreversibility through the formation of fractal strange attractors fur-

nished a new geometric interpretation of the Second Law of Thermodynamics in terms of

an underlying reversible mechanics3.

The correspondence between manybody molecular dynamics and the concepts developed

in dynamical systems theory involves five key ideas :

[ 1 ] Simulating nonequilibrium systems requires a new nonequilibrium molecular dynamics

which, unlike Hamiltonian mechanics, includes thermodynamic control variables.

[ 2 ] These control variables, such as thermostats or ergostats, can provide ergodic equi-

librium dynamics, replicating Gibbs’ canonical distribution.
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[ 3 ] Away from equilibrium this same approach, while time-reversible, can promote and

maintain nonequilibrium steady states.

[ 4 ] Despite the time-reversible nature of the nonequilibrium flow equations the resulting

phase-space description is dissipative, on average, and generates multifractal attractors.

[ 5 ] The multifractal nature of nonequilibrium steady states confirms their rarity and

provides a mechanical explanation of the Second Law of Thermodynamics.

The dynamical systems approach to irreversible processes continues to provide new insight

into both equilibrium and far-from-equilibrium flows4,5. Our intent here is to illustrate this

insight by the exploration of the simplest possible dynamical models for nonequilibrium

steady states. We begin with the Galton Board problem5–7, a steady field-driven flow with

impulsive hard-disk collisions. We continue, and then conclude, with a variety of generalized

harmonic oscillator problems8. These illustrate heat flow and ergodic fractal formation with

just three ordinary differential equations. The hard-disk Galton Board and the generalized

conducting-oscillator problems display all of the key ideas linking manybody mechanics to

small-system analogs.

The plan of this work is as follows. We first review the Galton Board problem and use

that example to illustrate the fractal attractors generated by time-reversible nonequilibrium

steady states. We visualize these attractors through two-dimensional cross sections of their

three-dimensional phase-space distributions. The Galton Board is one of the simplest chaotic

problems. It is deterministic and ergodic in its three-dimensional phase space. The ergodicity

is enabled by the ( exponential ) Lyapunov instability of its hard-disk collisions.

We then explore ergodicity ( dynamical access to all phase-space states ) for smoothly-

continuous harmonic-oscillator problems, at and away from thermal equilibrium. Many of

the nonequilibrium versions of oscillator problems provide dissipative strange attractors in

just three or four phase-space dimensions. We point out some useful numerical techniques

for exploring the boundary between chaos and regularity and discuss the possibility of nu-

merical implementations of Liouville’s phase-space flow equations. Finally we tie together

these simple microscopic example problems to their real-world analogs in macroscopic ther-

modynamics and computational fluid mechanics.
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FIG. 1: Description of collisions in the Galton Board in terms of the angles α and β . At a collision

the radial velocity, − cos(β) changes sign while the tangential velocity sin(β) is unchanged.

II. THE GALTON BOARD–ERGODIC, TIME-REVERSIBLE, DISSIPATIVE

Our goal throughout is to connect dynamics, statistical mechanics, and nonequilibrium

systems with the simplest possible examples. The Galton Board models Sir Francis Galton’s

lecture table probability demonstration based on the chaotic motion of particles introduced

at the top and in the center of a fixed lattice of scatterers. In our idealized mechanical

steady-state model this field-driven motion occurs at constant speed. To implement this

idea the field’s acceleration is moderated by a deterministic time-reversible “thermostat”

force acting parallel to the particle’s velocity. The resulting trajectory is isokinetic and

continuously dissipates field energy as heat. The field is the source of energy. The heat

reservoir represented by a thermostat force is the compensating heat sink. The overall

description of this isothermal ( constant kinetic energy ) Galton Board model system is the

prototypical simplest mechanical example of a time-reversible nonequilibrium steady state.
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FIG. 2: Field Dependence of Galton Board Collisions. Each collision corresponds to a single

point [ 0 < α < π with − 1 < sin(β) < +1 ] so that each of these four sample phase-space cross

sections illustrates 300,000 successive collisions. At zero field strength the distribution of points is

completely uniform with a constant density of points.

The computation of its dynamics involves solving four coupled ordinary differential equations

for the (x, y) location of the falling particle and its velocity (px, py) and is punctuated by

hard-disk scatterer collisions. For simplicity the falling particle has unit mass and speed.

We choose the accelerating field parallel to the y axis, which is perpendicular to one set of

rows of scatterer particles, as shown in Figure 1.

The resulting diffusive motion through such a periodic array of scatterers is easy to

program, particularly if the scatterers are motionless “hard disks”. One simply integrates

the motion equations for (x, y, px, py) until the moving particle finds itself “inside” a scatterer

( | r | < 1/2 ) . Then the dynamics is returned to the previous ( x, y ) coordinate set. There

the sign of the radial velocity is changed from negative to positive, and the integration

is continued. We have found that Runge-Kutta integration is the simplest useful method

for generating trajectories between collisions. The alternative analytic approach6, though

feasible, is cumbersome.
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In between collisions, the equations of motion, with the field −E in the y direction, are :

ẋ = px ; ẏ = py ; ṗx = −ζpx ; ṗy = −E − ζpy .

We choose the linear “frictional force” −ζp, to enforce an isokinetic constant-speed con-

straint. This linear force is the simplest choice. It also follows directly from Gauss’ Principle

of Least Constraint9, where the constraint condition controls the kinetic energy, for which

we choose

K ≡ (p2x + p2y)/2 = (1/2) ; K̇ ≡ 0 .

The linear constraint force, −ζp , is sufficient to satisfy the isokinetic condition :

K̇ ≡ 0 = pxṗx + pyṗy = −ζp
2
x −Epy − ζp2y −→ ζ = −Epy .

A unit cell, within which the motion occurs, is pictured in Figure 1. It is convenient

to think of the moving particle as a mass point and the scatterers as fixed particles of unit

diameter. At each collision ( defined by the two angles α and β shown in Figure 1 ), the

radial component of the velocity [ − cos(β) ] is reversed from negative to positive and the

motion is continued with the resulting post-collision values of { px, py } . By choosing a

scatterer density of four fifths the maximum close-packed density we avoid the possibility of

a ballistic collisionless trajectory. The inevitable scatterer collisions make possible ( and for

moderate field strengths, inevitable ) diffusive piecewise-continuous trajectories punctuated

by a series of scatterer collisions.

Three distinct types of solution result, conservative, dissipative, and periodic, with the

type determined by the initial condition and the field strength Ey . For zero field the mo-

tion is ergodic and conservative, obeying the equilibrium version of Liouville’s Theorem,

ḟ(x, y, px, py) ≡ 0 . That is, all conceivable collision types do occur, and with a uniform

probability when plotted in the [ α, sin(β) ] plane. As the field is increased it becomes ap-

parent that the distribution of collisions, though becoming nonuniform, remains “ergodic”,

with nonzero probability everywhere. We use the word “ergodic” as equivalent to the Ehren-

fests’ “quasiergodic” notion of a dynamics that eventually comes arbitrarily close to every

point in the distribution. At relatively high values of the accelerating field things can be

different. Trajectories can become trapped in stable periodic orbits, some conservative and

some dissipative so that the motion is no longer ergodic. See, for an obvious example, the

“hole” in the distribution for E = 4 shown in Figure 2 .
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Quantitative investigation of the two-dimensional phase-space cross sections illustrated

in Figure 2 reveals that the densities of points in the vicinity of ( 1 ) a randomly chosen

point ∝ rD1 and of ( 2 ) a collisional point ∝ rD2 are different, with 2 ≥ D1 ≥ D2 ≥ 1

. These power laws define4 ( 1 ) the “information dimension” and ( 2 ) the “correlation

dimension” of the various fractal cross sections. Both of these two fractional dimensions

vary with field strength.

Despite this singular fractal behavior there is no problem computing the mean vertical

current and the equivalent conductivity. New phenomena appear at field strengths somewhat

higher than E = 3 : stable sequences of repeated collisions begin to occur. In the full three-

dimensional phase space, which includes an additional time dimension for the free-flight

portion of the trajectories, the stable sequences are described by regular conservative tori

in [ α, sin(β), t ] space or by dissipative limit cycles in which field energy is absorbed by the

time-reversible friction force −ζp . Examples of both types are shown in Figure 3. The

family of two-bounce horizontal orbits shown at the left has no net current. In contrast,

the ten-bounce orbit on the right is strongly dissipative with a net downward current. This

motion generates a one-dimensional limit-cycle orbit in the three-dimensional phase space

and would be represented by five zero-dimensional dots in a collisional cross-section picture

of the type shown in Figure 2 .

Let us summarize our findings from this simple nonequilibrium steady-state problem.

The Galton Board is deterministic, time-reversible, and dissipative. With the field “off” the

motion is ergodic – it comes arbitrarily close to any collision type from headon [ sin(β) = 0 ]

to glancing [ sin(β) = ±π ] and anywhere from the top ( α = π ) to the bottom ( α = 0 ) of

a scatterer. This ergodicity provides a direct connection between Newton’s dynamical and

Gibbs’ statistical treatments of mechanical systems.

With the field “on” the dynamics becomes fractal, though still ergodic for moderate field

strengths. The phase-space description becomes a fractional-dimensional representation of

collisions which is singular, nonuniform, and dissipative. The dissipation reflects the conver-

sion of gravitational work into heat through the mechanism of a heat reservoir. Although

the motion and the motion equations are perfectly time-reversible, the typical field-driven

case is at the same time dissipative. The conversion of field energy Ey to extracted heat is
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FIG. 3: Conservative Tori at E = 4 and a Dissipative Limit Cycle at E = 6 . The two-bounce

trajectories shown at the left occur in the prominent “hole” seen in the E = 4 collision plot of

Figure 2 . The periodic orbit at the right corresponds to five zero-area points in the [ α, sin(β) ]

representation of Figure 2 .

imposed by the friction coefficient ζ :

〈 ζp2 〉 = 〈 2ζK 〉 = 〈 ζ 〉 = 〈 Ṡ/k 〉 > 0 .

Dividing the dissipated heat ζp2 by the temperature, T = (p2/k) shows that the friction

coefficient is also equal to the instantaneous irreversible entropy production, ζ = (Ṡ/k)

where k is Boltzmann’s constant. In our numerical work we set it equal to unity, k ≡ 1 .

Because the Galton Board distributions are fractal, with zero-area cross sections [ having

fractal dimensionalities less than two ] the random-sampling probability of finding a point
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[ α, sin(β) ] on the strange attractor is precisely zero. If one attempts to define a limiting

probability density in the cross sections by counting points in small cells, he soon discovers

that the density does not have a small-cell limiting value. Instead it diverges as a fractional

power of the cell size. This finding was both surprising and illuminating in 19873,6. Since then

it has turned out that such fractal attractors are typical representations of nonequilibrium

steady states, and not just for small systems. Manybody simulations of time-reversible shear

flows and heat flows likewise provide strange attractors with fractional dimensionalities less

than that of the phase spaces in which they are embedded10. These attractors are “strange”

[ fractal ] and “chaotic” [ because small perturbations on them grow exponentially fast ],

despite the continuous equations that generate them and despite their zero-volume attractive

nature. The dimensionality loss exhibited by attractors increases in an irregular manner with

the field-induced departure from equilibrium.

These fractal distributions are fully consistent with the Second Law of Thermodynamics.

That Law declares that only the dissipative forward-in-time versions of the nonequilibrium

trajectories are observable. The time-reversed versions of the dynamics – unphysical tra-

jectories which convert heat-reservoir energy into work – are both mechanically unstable

and computationally unobservable. Nonequilibrium dissipative trajectories seek out fractal

attractors when followed forward in time. Reversed trajectories make up an unstable unob-

servable phase-space repellor, a fractal phase-space object which repels rather than attracts

nearby trajectories and is unstable to perturbations. Picturing such a repellor in [ α, sin(β) ]

space is easy. Simply reflect the fractal attractor objects of Figure 2 about their horizontal

center lines. This changes the sign of the velocity at each collision and is equivalent to

picturing the motion backward in time.

The ubiquitous fractal nature of nonequilibrium steady states, singular everywhere, in-

dicates the difficulty inherent in attempting their mathematical description. Although the

motion of the hard-disk-scatterer Galton Board problem is ergodic for moderate fields, with

all states accessible, typically, for smoothly-continuous potentials there are nonergodic situ-

ations for simple mechanical systems. The mechanical treatment of theoretical models with

smooth potential minima is complicated by the complex phase-space structure of Hamil-

tonian chaos – “islands” ( the two-dimensional cross sections of three-dimensional tori ),

chains of islands, . . . , and the endless details of structure on all scales, from large to the

microscopic and to the unobservably small11.
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This unsettling complex situation can be avoided, or simplified, by the judicious use of

thermostating forces. The best problem area for such explorations is the one-dimensional

harmonic oscillator, the prototype of smooth Hamiltonian systems. We will see how a ther-

mostated oscillator can be modeled so as to avoid the infinitely-many nonergodic solutions

of Hamiltonian mechanics while providing insight into irreversible processes described by

simple phenomenological laws. Let us turn next to the thermostating of that simplest case,

a single harmonic oscillator with a specified temperature T rather than a fixed Hamiltonian

energy E .

III. NOSÉ SEEKS GIBBS’ CANONICAL ENSEMBLE THROUGH CHAOS

Willard Gibbs invented his “canonical” ( in the sense of “simplest” or “prototypical” )

ensemble in order to link microscopic phase-space dynamics to macroscopic temperature and

thermodynamics. His canonical ensemble collects together all the energy states accessible

to a system in contact with a heat reservoir at a temperature T . The relative weight of

each such state in the ensemble is the familiar Maxwell-Boltzmann weighting proportional

to e−E/kT . Here k is Boltzmann’s constant.

For simplicity we focus on the application of Gibbs’ ensembles to the one-dimensional

harmonic oscillator. With the mass and force constant and Boltzmann’s constant all set

equal to unity Gibbs’ canonical weighting of the oscillator states is the familiar Gaussian

distribution, a probability density for q and p :

f(q, p) = (2πT )−1e−q2/2T e−p2/2T .

A common textbook rationalization of the canonical distribution is to imagine that the

members of an ensemble of systems are weakly coupled to one another. The coupling

permits energy to be exchanged among the systems, resulting in Gibbs’ maximum-entropy

canonical distribution. Shuichi Nosé developed a much simpler picture in which a single

system is coupled dynamically to a computational heat reservoir in such a way that a long-

time average of that system’s properties is identical to the canonical average. Let us describe

this idea in the context of the one-dimensional harmonic oscillator.
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A. Nosé’s Canonical Mechanics

By 1984 Shuichi Nosé had documented his modification of Hamilton’s constant-energy

dynamics in two ground-breaking papers12,13. His new dynamics was formally consistent

with Gibbs’ constant-temperature canonical distribution. For the oscillator problem at the

temperature T , the simplest form of Nosé’s novel Hamiltonian, now with two degrees of

freedom, # = 2 , rather than one, has the form :

2HNosé(q, p, s, ζ) = (p/s)2 + q2 +#T ln(s2) + ζ2 .

The added thermostat degree of freedom, s and its conjugate momentum ζ ≡ ps , along with

the usual (q, p) pair describes the canonical oscillator problem with four ordinary differential

equations rather than the usual two :

q̇ = (p/s2) ; ṗ = −q ; ṡ = ζ ; ζ̇ = (p2/s3)− (#T/s) . [ Nosé ]

Nosé carried out the straightforward and tedious algebra necessary to show that this

approach can be made consistent with Gibbs’ canonical distribution. Three steps were

involved in his demonstration :

[ 1 ] “Time Scaling”: (d/dt) ≡ · −→ s(d/dt) ≡ s · ;

[ 2 ] redefine momentum: (p/s) −→ p ;

[ 3 ] redefine degrees of freedom: # −→ #− 1 .

More than a decade passed before Carl Dettmann simplified this approach14,15. He showed

that starting out with a scaled Hamiltonian and setting it equal to zero ,

HD ≡ sHNosé ≡ 0 ,

produces a dynamics identical to Nosé’s three-step approach without the need for an explicit

time-scaling step.

B. Nosé-Hoover Canonical Mechanics

The even simpler “Nosé-Hoover” version of Nosé’s approach16 eliminates all three of these

steps as well as the extraneous variable s . It is based on the application of Liouville’s phase-
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FIG. 4: Trajectory intersections with the q = 0, p = 0, and ζ = 0 planes are shown. The points

in these cross sections all correspond to penetrations by a single chaotic trajectory with the initial

conditions (q, p, ζ) = (0, 5, 0) . The temperature is unity for these three equilibrium Nosé-Hoover

oscillator cross sections.

space continuity equation to the oscillator equations of motion augmented by the definition

of a time-dependent friction coefficient ζ :

q̇ = p ; ṗ = −q − ζp ; ζ̇ = [ (p2/T )− 1 ] −→ 〈 p2 〉 = T . [ NH ]

This friction coefficient acts as a “thermostat”, steering the instantaneous temperature p2

toward the target thermostat temperature T . We can verify that this three-equation model

is consistent with the canonical distribution for q and p augmented by a Gaussian distribution

for ζ :

f(q, p, ζ)× (2π)3/2T = e−q2/2T e−p2/2T e−ζ2/2 .

12



To show this we evaluate the time-rate-of-change of the probability density f(q, p, ζ) at a

fixed location ( q, p, ζ ) in the three-dimensional phase space where the local flow velocity is

v = ( q̇, ṗ, ζ̇ ) :

(∂f/∂t) = −∇ · (fv) = −f(∂ṗ/∂p)− (∂f/∂q)q̇ − (∂f/∂p)ṗ− (∂f/∂ζ)ζ̇ =

fζ + (qf/T )(p) + (pf/T )(−q − ζp) + (ζf)[ (p2/T )− 1 ] ≡ 0 .

Because (∂f/∂t) vanishes everywhere the Nosé-Hoover equations are consistent with Gibbs’

canonical distribution.

Although the smooth and simple three-dimensional Gaussian distribution is the exact

stationary solution of the Nosé-Hoover motion equations, the new dynamics conceals an

intricate complexity connected with “chaos”, the exponential sensitivity of calculated

trajectories to perturbations of the initial conditions. The three [ NH ] motion equations

included here are just the necessary minimum for chaos. But these necessary three are

not necessarily sufficient, as is easily revealed by a numerical exploration of the oscillator’s

phase space distribution f(q, p, ζ) . Whether or not there is chaos depends, in a highly-

complicated way, upon the initial conditions.

To outline the chaos’ profile, let us advance a trajectory beginning at a known chaotic

initial condition such as ( q, p, ζ ) = ( 0, 5, 0 ) or ( 3, 3, 0 ) . By plotting any two of the

three variables { q, p, ζ } just as the third passes through zero, three separate cross sections

of the chaotic sea are revealed. Figure 4 shows the sequence of 768,460 such successive

crossing points following from the initial condition { q, p, ζ } = { 0.00, 5.00, 0.00 } using one

billion fourth-order Runge-Kutta timesteps with dt = 0.001 . We see from Figure 4 that

only about six percent of the three-dimensional stationary Gaussian measure makes up the

chaotic sea. Any trajectory started in the sea cannot leave and eventually explores all of it.

The remaining phase space is occupied privately by concentric tori enclosing stable pe-

riodic orbits. The simplest such orbit for the Nosé-Hoover oscillator is shown in Figure 5.

The repeat time for this orbit is 5.5781. It includes four symmetric turning points :

{ q, p, ζ } = { 0.0000,±1.5499, 0.0000 } and { ±1.2144, 0.0000, 0.0000 } .

This orbit is the central core of an infinite family of nested tori. See Figure 6 . The tori are

quasiperiodic regular structures tracing out two-dimensional private regions where there is
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FIG. 5: Simplest [ shortest period ] periodic orbit for the Nosé-Hoover oscillator with T = 1 .

The initial condition is the turning point (q, p, ζ) = (0.0, 1.5499, 0.0) . The motion equations are

q̇ = +p ; ṗ = −q − ζp ; ζ̇ = p2 − 1 . The (q, p/s, ζ) trajectory from the original Nosé equations

with s initially equal to unity and with # reduced from 2 to 1 [ so that the motion equations are

q̇ = (p/s2) ; ṗ = −q ; ζ̇ = (p2/s3)− (1/s) ] traces out exactly the same (q, p, ζ) trajectory pictured

here, but with a period 7.1973 rather than 5.5781 . The Nosé-Hoover Lyapunov exponent varies

in the range ±0.6513 on this orbit.

none of the chaos present which would make new three-dimensional regions accessible. Let

us have a more detailed look at the mechanism enabling chaos by measuring the rates at

which chaotic orbits separate on their exploratory journeys.
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FIG. 6: Cross sections with q = 0, p = 0, ζ = 0, starting with the periodic orbit penetration at

(±1.2144, 0, 0) and increasing or decreasing the initial coordinate value of ±1.2144 by 15 successive

steps of ±0.1, ending up with the initial q values ±2.7144 . The resulting cross-sections are shown.

The 12th positive and negative initial conditions lie within the chaotic sea. All the rest generate

tori which trace out individual points along the lines shown in this figure.

C. Characterizing Chaos through Lyapunov Instability

Chaos is an important topic. Without it there would be no hope for correspondence

between the microscopic and macroscopic descriptions of material behavior. Chaotic tra-

jectories exhibit “Lyapunov instability” — two nearby trajectories [ a “reference” and its

“satellite”, as explained below ] rapidly separate. When averaged over the chaotic sea

( that both of them inhabit ) the mean value of this instantaneous separation rate de-

fines the largest ( positive ) Lyapunov exponent, λ1 . This instantaneous separation rate ,

λ1(t) = | ṙ1 − ṙ2 |/| r1 − r2 | , is an observable which is easy to measure.

15



Giancarlo Benettin’s Lyapunov-exponent algorithm17 follows the simultaneous dynamics

of a “reference” trajectory and a nearby “satellite”, rescaling their separation to maintain

their closeness at the end of every timestep. Typically only the position of the satellite is

adjusted to restore the length of the separation vector | rs − rr | . Alternatively both of

two neighboring trajectories r1 and r2 can be adjusted symmetrically. Evidently a theoreti-

cal treatment becomes complicated at the boundary where toroidal and chaotic trajectories

meet, mix, and coexist. A more elegant continuous version of Benettin’s step-by-step rescal-

ing can be implemented by including a constraining Lagrange multiplier in the differential

equations of motion18. In the symmetric case the multiplier is applied to both trajectories :

ṙ1 = v1 + (λ/2)(r2 − r1) ; ṙ2 = v2 + (λ/2)(r1 − r2) .

Here v represents the unconstrained motion equations while ṙ = ( q̇, ṗ, ζ̇ ) describes the actual

constrained motion. The Lagrange multiplier enforcing the constraint of fixed separation is

just the local value of the largest Lyapunov exponent. Its longtime average is the largest of

the three global Lyapunov exponents which together constitute the “Lyapunov spectrum”

of the three-equation Nosé-Hoover oscillator :

λ1 = 〈 λ1(t) 〉 ; λ1(t) = (v1 − v2) · (r1 − r2)/(r1 − r2)
2 .

λ2 and λ3 are defined in terms of the comoving growth or decay rates of an area defined by

three trajectories — the rate is λ1 + λ2 ; and of an infinitesimal volume ⊗ defined by four

trajectories with rate :

(∂q̇/∂q) + (∂ṗ/∂p) + (∂ζ̇/∂ζ) = 0− ζ(t) + 0 ≡ (⊗̇/⊗) = λ1(t) + λ2(t) + λ3(t) .

For the isothermal Nosé-Hoover oscillator with all the parameters equal to unity that equi-

librium oscillator, chaotic or not, has no dissipation. This is implied by its close relationship

to the four oscillator equations of motion according to Nosé’s Hamiltonian formulation :

q̇ = (p/s2) ; ṗ = −q ; ṡ = ζ ; ζ̇ = (p2/s3)− (#T/s) . [ Nosé ]

Whether # is chosen equal to 1 or to 2, the four Lyapunov exponents describing Nosé’s

oscillator sum to zero as a consequence of Liouville’s Theorem :

(∂q̇/∂q) + (∂ṗ/∂p) + (∂ṡ/∂s) + (∂ζ̇/∂ζ) ≡ (⊗̇/⊗) = λ1(t) + λ2(t) + λ3(t) + λ4(t) ≡ 0 .
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The mean value of the friction coefficient, 〈 ζ 〉 , vanishes in both cases [ Nosé or Nosé-

Hoover ] because the motion equations are “conservative” whether or not the initial condition

is chaotic. Accordingly, although the local Nosé-Hoover spectrum sums to −ζ(t) its time-

averaged spectrum sums to zero :

〈 (d ln⊗/dt) 〉 = 〈 (∂ṗ/∂p) 〉 = 〈 −ζ 〉 = λ1 + λ2 + λ3 = 0 .

In view of Hamiltonian mechanics’ time-reversibility both spectra are also symmetric,

with the first and last time-averaged exponents summing to zero. Within the chaotic sea

the Lagrange-multiplier analyses of the equilibrium oscillators give :

{ λ } = { λ1, λ2, λ3, λ4 } = { +0.001925, 0.000, 0.000,−0.001925 } ; [ Nosé ]

{ λ } = { λ1, λ2, λ3 } = { +0.0139, 0.000,−0.0139 } . [ Nosé−Hoover ]

In the quasiperiodic toroidal regions where chaos is absent all the time-averaged Lyapunov

exponents are zero. Although the time averaging produces symmetric spectra the instanta-

neous spectra need not be symmetric. Let us demonstrate that somewhat surprising lack of

forward-backward symmetry next.

D. The Tricky Time Reversibility of the Nosé-Hoover Lyapunov Spectrum

One might well expect that the “local” ( instantaneous ) oscillator Lyapunov spectra

are time-reversible too. After all, both the trajectories used to define the largest Lyapunov

exponent are reversible. Growing separation, forward in time, corresponds to diminishing

separation when reversed, and vice versa. A simple way to test this idea of time-reversible

Lyapunov exponents is to store a reference trajectory { q, p, ζ } going forward in time, with

dt > 0 . Then, analyzing the instabilities forward and backward in time, as described by

the tendency of an adjustable “satellite” trajectory to flee or approach a stored “reference”

is a fruitful approach.

Time reversibility can be imposed on a stored reference trajectory { q, p, ζ } in either of

two ways. The stored data can be used “as is” for a reversed trajectory simply by changing

the sign of the time increment dt . Then the stored data are obviously solutions of the three

reversed motion equations :

q̇ = −p ; ṗ = +q + ζp ; ζ̇ = 1− p2 for dt < 0 .
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Alternatively one can simply change the signs of the stored { p } and { ζ } [ and { λ } if the

Lagrange multiplier approach is used ] . Then the modified sequence of { q, p, ζ } satisfies

the original motion equations when it is played backward. These two ways of exploring

reversibility are precisely equivalent in computation. Only the signs of some of the numbers

are changed. The magnitudes forward and backward are identical.

If one were to follow this reversibility procedure for both the reference and the satellite

trajectories, then increasing separation going forward in time would correspond to decreasing

separation in the reversed trajectory, and hence to a negative Lyapunov exponent rather than

a positive one. Evidently in the Nosé-Hoover oscillator case, with just three exponents, the

largest exponent going forward would become the most negative going backward :

λf
1 = 〈 λ1(t) 〉dt>0 = − 〈λ3(t) 〉dt<0 .

Although the Lagrange-multiplier equations using a stored reference trajectory with stored

satellite trajectories are all of them time-reversible, with both v(t) and λ1(t) changing sign

if dt < 0 , the reversed exponents are erroneous ! The correct approach, storing a reference

trajectory and then generating a new set of reversed-time satellite trajectories to go with

the reference, using Lagrange multipliers or with Benettin’s rescaling algorithm, gives an

instantaneous spectrum which is unrelated to its forward-in-time twin. For us this seems

surprising, even though it is fairly well known, and suggests interesting research directions,

perhaps leading to a better understanding of which spectra reverse and which do not. The

simplest explanation is probably best : the tendency of two trajectories to separate can

depend only on their past history, and not the future. On a particular time-reversible

trajectory, { q(ndt) } , without knowing whether dt is positive or negative, the notions

of past and future could be thought nebulous. The low-cost readily-available cure for this

uncertainty is straightforward computation and observation, finding out what does happen.

What actually does happen is surprising, and is illustrated in Figure 7 . The largest

Lyapunov exponent going forward in time and the largest going backward typically sum

nearly to zero, indicating that the vectors joining the reference and satellite trajectories are

almost parallel in the two time directions. The stretching or shrinking observed for dt > 0

is replaced by its opposite, shrinking or stretching for dt < 0 :

+λdt>0
1 (t) ≃ −λdt<0

1 (t) .
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FIG. 7: The summed spectra, both forward and backward, and the negative value of ζ all

correspond to the same bold curve in the lower right panel. The left panels represent the first

two Lyapunov exponents forward ( thick lines ) and backward ( thin lines ) in time. The summed

exponents, forward and backward for the two methods of time reversal, satisfy similar sum rules :

λ1 +λ2+λ3 = ∓ζ . The coordinate q (thick line) and the momentum p (light line) versus time are

shown in the upper right panel. Notice that a brief segment of time, just past 2520, during which

the momentum is near zero corresponds to the only part of the plotted interval in which the first

Lyapunov exponents have very different magnitudes in the forward and backward directions. The

arrow points out the maximum in λf
1 to which λb

1 is unrelated.

Of course this cannot be precisely true as the averaged values of both versions of λ1 are

positive. But the fluctuations in the exponent are two orders of magnitude larger than the

relatively-small time-averaged value of ±0.0139 . The fluctuations are of the order of the

oscillator frequency, ω = 2πν , rather than the much smaller instability rate.

A trajectory fragment [ 50,000 timesteps forward and backward from near the center

a much longer simulation, 0 < t < 5000 ] and specially selected to show the reversibility

phenomena, is analyzed in Figure 7 . Apart from the single strong maximum in λ1(t)
dt>0

indicated by the arrow the sum of the two exponents is close to zero. There is no apparent

correlation between the values of the second or the third Lyapunov exponents in the two

time directions. Thus trajectory stability depends qualitatively on the direction of time,

even for equilibrium systems.
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In any case, the sums of all three exponents going forward and backward in time both

must obey the instantaneous sum rule :

λ1(t) + λ2(t) + λ3(t) = (d ln⊗/dt) = ∓ζ .

The equilibrium oscillator considered here behaves like a dissipative system with an asym-

metry between the forward and backward directions of time which can be traced to the

varying comoving phase volume ⊗(t). With even a little thermostating the resulting heat

transfer is enough to break the pairing symmetry expected for Hamiltonian systems. In

nonequilibrium steady states we will see that this same symmetry breaking is unrelenting

and in fact prevents reversing the formally time-reversible trajectories by any means other

than reusing stored trajectories.

IV. OSCILLATOR ERGODICITY VIA GENERALIZED FRICTION

We have seen that numerical solutions of the three Nosé-Hoover oscillator equations

( q̇, ṗ, ζ̇ ) are far from ergodic. The same is true for the four Nosé equations ( q̇, ṗ, ṡ, ζ̇ )

because the two trajectories are identical for the corresponding scaled variables :

ṫNH ≡ sṫN −→ { q, p, ζ, t }NH ≡ { q, (p/s), ζ, t }N( scaled ) .

Provided that the initial values of { q, p, ζ } correspond at tNH ≡ tN ≡ 0 with s(t = 0) ≡ 1

plots of ζ(q) are identical for the two sets of differential equations. This equivalence is a

useful demonstration of Nosé’s “scaling of time” with the time-scaling variable s .

Though ergodicity is lacking, the friction coefficient equations for ζ̇ guarantee that the

second velocity moments are equal to the specified value of the temperature

〈 p2 〉NH ≡ 〈 (p/s)
2 〉N ≡ T .

By controlling another moment the velocity distribution should come more closely to resem-

ble the equilibrium Maxwell-Boltzmann Gaussian. In fact two moments can be enough19.

Consider the simultaneous control of p2 and p4 . For this generalized Nosé-Hoover oscillator

problem two friction coefficients are involved, ζ for p2 and ξ for p4 :

q̇ = +p ; ṗ = −q − ζp− ξ(p3/T ) ; ζ̇ ∝ (p2/T )− 1 ; ξ̇ ∝ (p4/T 2)− 3(p2/T ) . [ HH ]
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Solutions of these “Hoover-Holian” [ HH ] equations, with all parameters equal to unity,

appear to be ergodic, with the probability density and all of its moments converging to

Gibbs’ Gaussian moments better and better as the sampling time is increased. At the

same time careful examination of the two-moment flow’s cross sections reveals that there

are no “holes” in the doubly-thermostated chaotic sea. This is in marked contrast to the

holy-sea sections seen in the singly-thermostated flows illustrated in Figures 4 and 6 .

Comprehensive tests for ergodicity were formulated and applied to the doubly-thermostated

[ HH ] equations in connection with the 2014 Snook Prize20.

Evidently one can never achieve perfect agreement in numerical tests as the probabilities

of high-energy states are not only infinitesimal but would also require infinitesimal timesteps

for computational stability. The four [ HH ] equations above, which control the second and

fourth velocity moments, are only one of several methods for achieving ergodicity for the

oscillator with the use of two friction coefficients. In view of this success it is natural

to wonder whether or not a single carefully-chosen thermostating variable could make the

dynamics ergodic.

There are many different approaches to the ergodicity problem. The symmetry of the

oscillator’s coordinate and momentum suggests that one could thermostat q2 just as well

as p2 or perhaps even both. By interpreting q2 as the fluctuation of the force these ideas

can be, and have been, applied to more complicated systems. Extensions of this idea to the

“weak” ( time-averaged ) control of two or more different moments, with forces proportional

to

[ (q2/T )− 1 ], [ (q4/T 2)− 3(q2/T ) ], [ (p2/T )− 1 ], [ (p4/T 2)− 3(p2/T ) ], . . . ,

have proved fruitful. Rather than describe all of these efforts let us concentrate on the

simplest of them, the simultaneous weak control of both (p2/T ) and (p4/T 2) using a single

friction coefficient. A useful tool in investigations of this sort is the χ2 test, which makes

it possible to estimate numerically which of two different thermostat choices gives results

closer to the Maxwell-Boltzmann velocity distribution. We turn to that next.
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A. Ergodicity with a Single Thermostat Variable – the χ2 Test

After 30 years of failed attempts involving dozens of investigators we recently discov-

ered that ergodic control of a harmonic oscillator appears to be possible with just a single

thermostat variable. An important clue, from the investigations of Bulgac, Kusnezov, Ju,

and Bauer21,22, was that cubic thermostats provide enhanced ergodicity relative to linear

ones. With cubic thermostats ergodic motion can occur even in the minimal case of a

three-dimensional phase space. For maximum simplicity we assign any and all control vari-

ables to the momentum because the canonical momentum distribution is always the same,

independent of the chosen potential energy.

Accordingly, let us assign the entire thermostating burden to the momentum through

just two velocity moments, again using the harmonic oscillator to illustrate :

q̇ = p ; ṗ = −q − ζn[ αp+ β(p3/T ) + γ(p5/T 2) ] ;

ζ̇ = α[ (p2/T )− 1 ] + β[ (p4/T 2)− 3(p2/T ) ] + γ[ (p6/T 3)− 5(p4/T 2) ] .

With this functional form of control, where n = 1 or 3 , it is easy to show that the corre-

sponding solution of Liouville’s continuity equation is again the Maxwell-Boltzmann Gaus-

sian distribution :

f(q, p, ζ) = e−q2/2T e−p2/2T e−ζn+1/(n+1) .

Monte Carlo or grid-based exploration of (α, β, γ) parameter space reveals many binary com-

binations of two types, (α, β, 0) and (α, 0, γ) , which fill out Gibbs’ distribution. Candidate

models have good velocity and coordinate moments as well as phase-space cross sections

without discernable “holes”. Figure 8 shows ζ = 0 cross sections for two successful combi-

nations ( α, β, γ ) = ( 0.05, 0.32, 0.00 ) and ( 1.50, 0.00,−0.50 ). Because motion equations

involving the fifth and sixth powers of velocity are “stiff” we have mostly restricted our

detailed explorations to combinations of the second-moment and fourth-moment controls.

How best to find such combinations ? There are many ways. A purely visual approach is

relatively effective. A hundred-frame movie is a convenient visualization tool. The frames

result from choosing an arbitrary grid of 100 ( α, β ) values and plotting 200,000 successive

( q, p ) cross-section points for which ζ vanishes. Frames lacking apparent holes in the

density, and also providing good second, fourth, and sixth moments identify ( α, β ) choices

as good candidates for ergodicity. The most interesting sections can be confirmed ergodic
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FIG. 8: Cross sections for ( α, β, γ ) = ( +0.05,+0.32, 0.00 ) [ at the left ] and ( 1.50, 0.00,−0.50 )

[ at the right ]. These sections are for equilibrium oscillators [ T = 1 ] and use controls linear and

cubic in p while linear in ζ , with n = 1 . The white lines correspond to “nullclines” where the

velocity normal to the cross section vanishes. The scales all range from −5.0 to + 5.0 . The upper

panels are the ζ = 0.0 sections. The lower panels are the q = 0.0 sections.

with greater accuracy by zooming in, while using a few million section points rather than

200,000 .

A more systematic approach, also useful, but not at all foolproof, can be based on Pear-

son’s χ2 statistic. χ2 comes in handy when it is desired to know if an observed distribution

{ o } ( from a numerical simulation ) is consistent with a predicted one ( with expected values

{ e } from a theoretical analysis of the flow equations ). For a candidate ( α, β ) combination

a coarse-grained probability can be defined and determined within N discrete sampling bins.

The mean-squared deviation of the bin probabilities from the expected theoretical value is
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divided by the expected bin population and averaged over bins. The Central Limit Theorem

predicts that the resulting sum :

χ2 ≡
N∑
〈 (o− e)2/e 〉 ,

where the angle-bracket average is over the points in each of the bins, will approach the

number of bins N if the “expected” already-known distribution { e } , is a match to the

“observed” one, { o } .

The simplest special case of this idea results if a uniformly flat distribution of random

numbers { 0 < R < 1 } is divided into N equal sampling bins. With just two bins the

large-sample limit is χ2 = 1 ; with four bins 3 ; with six bins 5, and so on. The limiting

value of χ2 with N bins is just N − 1 . With data gathered from dynamical simulations

where the distribution is not flat the dependence on the sample size is irregular and the

convergence is slowed due to the inevitable serial correlation of sampled trajectory data.

Knowing that Gibbs’ canonical oscillator distribution is Gaussian in all the variables

makes it possible to test bins in q or p or ζ , or combinations of these variables, using the

χ2 goodness-of-fit criterion. With 100 bins and a billion data points values of χ2 within

ten percent of the number of bins, χ2 ≃ 100± 10 , are typical when the distribution being

observed really is Gaussian. It is possible to debug such a program using a good random

number generator such as Press’ “ran2” generator from Numerical Recipes.

Our investigations suggested that control variables based on the differential equations :

q̇ = p ; ṗ = −q − ζn[ αp+ β(p3/T ) + γ(p5/T 2) ] ;

ζ̇ = α[ (p2/T )− 1 ] + β[ (p4/T 2)− 3(p2/T ) ] + γ[ (p6/T 3)− 5(p4/T 2) ] ,

can provide ergodicity for the harmonic oscillator. The equations are particularly stiff when

the sixth moment is included so that (α, β) = (0.05, 0.32) is the most promising of the

combinations we have tried to date. We have also included sample sections using a two-

parameter (α, γ) model controlling the second and sixth velocity moments. Because these

equations are stiffer, requiring timesteps of order 0.0001 rather than 0.001, the second and

fourth-moment control is the better choice. With this model the fluctuations of the largest

local Lyapunov exponent correspond to a standard deviation of about 27, two orders of

magnitude larger than its long-time-averaged value so that the exploration of phase space

is relatively rapid.
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Because the equilibrium Maxwell-Boltzmann momentum distribution e−p2/2T is the same

for any potential, this finding suggests that it may well be possible to thermostat any small

Hamiltonian system in this way. Let us check this idea for the simple pendulum.

B. Thermostating the Nosé-Hoover Pendulum Problem

We have seen that the Nosé-Hoover oscillator can be thermostated in a wide variety of

ways using either one, two ( or possibly even three ! ) control variables, though the stiffness

suggests that using three controls is unwise. In each case the consistency of the solutions

can be checked using Liouville’s Theorem to confirm that the stationary flow leaves Gibbs’

probability density unchanged :

(∂f/∂t) = −∇ · (fv) = 0 .

To apply similar ideas to the pendulum problem23 using a single friction coefficient we

need only to replace the potential energy: (q2/2) → − cos(q) so that Gibbs’ canonical

distribution becomes :

H = − cos(q) + (p2/2)→ f(q, p, ζ) ∝ ecos(q)/T e−p2/2T e−ζn+1/(n+1) with − π < q < +π .

We can make the friction coefficient ζ consistent with the Gaussian momentum distribution

by using an arbitrary collection of moments, for instance :

q̇ = p ; ṗ = − sin(q)− ζn[ αp+ β(p3/T ) + γ(p5/T 2) ] ;

ζ̇ = α[ (p2/T )− 1 ] + β[ (p4/T 2)− 3(p2/T ) ] + γ[ (p6/T 3)− 5(p4/T 2) ] .

The cross sections for (α, β) = (0.300, 0.300) [ found visually ] and (0.088, 0.188) [ found using

Pearson’s χ2 test ] are shown in the Figure 9 and, at least from the visual standpoint, both

distributions appear to be ergodic. The color indicates the magnitude of the local Lyapunov

exponent, λ1(t) .

Our oscillator and pendulum examples both suggest that there is a dynamics, determinis-

tic and time-reversible, which closely follows Gibbs’ canonical distribution. Because many of

the problems addressed with molecular dynamics involve isothermal rather than isoenergetic

processes this makes isothermal molecular dynamics a particularly useful tool.
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With weak polynomial control of the momentum it appears that we have completed Nosé’s

search for a deterministic time-reversible dynamics satisfying Gibbs’ canonical distribution.

With equilibrium thermostats under control let us go on to consider the extension of this

dynamics to nonequilibrium systems in which the temperature varies with location8. We

demonstrate the possibilities by including a temperature gradient in the harmonic oscillator

problem, allowing the dynamics to become dissipative by transferring heat from “hot” to

“cold”. These problems have an intrinsic pedagogical interest because they are simultane-

ously time-reversible and dissipative. They generate multifractal attractor-repellor pairs,

often with a considerable æsthetic interest.

V. NONEQUILIBRIUM TIME-REVERSIBLE DISSIPATIVE OSCILLATORS

Gibbs’ equilibrium canonical distribution depends upon the temperature T = 〈 p2/mk 〉

where p is a cartesian momentum component for a particle with mass m . For simplicity we

continue to choose both k and m equal to unity. We can introduce a nonequilibrium tem-

perature gradient, ∇T , by choosing a coordinate-dependent temperature T (q) . This opens

up the possibility for heat transfer leading to a quantitative treatment of nonequiibrium

problems. We choose a smooth profile with a maximum temperature gradient ǫ :

T (−∞) = 1− ǫ < T (q) ≡ 1 + ǫ tanh(q) < 1 + ǫ = T (+∞) .

Although the equations of motion ,

q̇ = p ; ṗ = −q − ζp ; ζ̇ = ζ̇(p2, p4, p6, T ) ,

are still time-reversible [ with (+t,+q,+p,+ζ)→ (−t,+q,−p,−ζ) ] the dynamics can turn

out to be dissipative and irreversible . How can this be? What does it mean? To address

these questions, which are good ones, we must look at time reversibility in more detail.

The concept of time reversibility24 can be made unnecessarily complex by introducing the

concept of phase-space involutions. A straightforward definition is the wiser choice: First,

imagine a movie of the motion in question ( this presupposes a connection between the

dynamical system of differential equations and objects capable of visual representation ) ;

Second, play the movie backwards, ( but with the clock on the wall still recording a steady

increase in the time ) just reversing the order of the frames. In the backward movie velocities
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FIG. 9: Ergodicity of the isothermal Simple Pendulum with T = 1 and cubic control [ n = 3 and

ṗ ∝ −ζ3 ] . These cross sections correspond to (α, β) = (0.300, 0.300) to the left and (0.088, 0.188)

to the right. γ = 0 in both cases.The vertical scales range from −4.0 to +4.0 and the horizontal

scales range from −5.0 to +5.0 . Note that the range of the pendulum coordinate ( where q is an

angle ) is periodic : −π < q < +π .

change sign but coordinates do not. If the backward movie obeys the same equations as the

forward one the dynamical system describing the motion is time-reversible. If not, then not.

Variables odd in the time, such as velocity and the microscopic heat flux, change sign in the

reversed motion, but parameters, like gravity, are held fixed. In every case that we study

here our microscopic differential equations of motion satisfy this criterion. In the simplest

example, the Nosé-Hoover oscillator ,

q̇ = +p ; ṗ = −q − ζp ; ζ̇ ∝ [ (p2/T )− 1 ] ;
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reversing the sign of p and the variable ζ is equivalent to reversing the sign of the time so

that this system is time-reversible, even in the case where the temperature T depends on

the coordinate q . In the simplest nonexample,

q̇ = +p ; ṗ = −q − ζp ,

where ζ is now a fixed parameter, not a variable, changing the sign of p corresponds to

reversing the q̇ equation but not the ṗ one so that the constant-friction system is not time-

reversible. The same is true of continuum solutions of viscous fluid flows and Fourier heat

flow. The continuum constitutive relations for the shear stress of a Newtonian fluid with

a velocity gradient and the heat current in a Fourier heat conductor with a temperature

gradient :

σxy = η[ (∂ux/∂y) + (∂uy/∂x) ] ; Qx = −κ(∂T/∂x) ,

are specially interesting. Here η is the shear viscosity and κ is the thermal conductivity.

From the virial theorem we know that shear stress σ is an even ( time-reversible ) function

of the velocities, while the heat flux vector Q is odd. Both these observations contradict the

phenomenological macroscopic constitutive relations laid down by Newton and Fourier.

From thermodynamics we are well aware that “The entropy of the Universe increases.”

Entropy is associated with heat reservoirs. When a reservoir absorbs heat δQ its entropy

increases by δQ/T . Likewise, when it releases heat the reservoir entropy decreases. Let us

get back to the main question, “How do time-reversible motion equations produce irreversible

behavior ?”

It is a curious and hard-to-grasp fact that reversible mathematical equations can lead to

irreversible behavior in the presence of Lyapunov instability, when the separation between

two nearby trajectories increases. There would seem to be no reason why an increasing

separation would win out over a decreasing one, particularly in the case where phase volume

is conserved. But a positive Lyapunov exponent signals the system’s seeking out the direction

of increased phase-space states. Think again of computing the largest Lyapunov exponent

by rescaling the separation of two nearby trajectories. That is, consider the linear variation

of a coordinate perturbation backward and forward in time, δ , paralleling the direction

characterized by the local Lyapunov exponent λ(t) :

δ̇/δ = λ(t)→ 〈 δ(t)/δ(0) 〉 = (1/2)[ e+λdt + e−λdt ] = cosh(λdt) ,
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which gets bigger, indicating more phase volume, when averaged over the two possible

time directions. In dynamical systems theory directions with growth are referred to as the

“unstable” manifold while the decay directions are the “stable” one. If the direction of δ

is allowed to develop “naturally”, with only its length, but not its direction constrained, it

soon comes to point in the direction associated with the largest Lyapunov exponent λ1 .

But this is not at all the direction of maximum growth. To see this consider a simple

example23, a harmonic oscillator’s orbit where the mass and the force constant are both equal

to 1/4, and with an orbit perturbation (δq, δp) having a fixed length | δ | . If we choose

a displacement parallel to the direction of the perturbation ( as in Benettin’s rescaling

algorithm used to determine the maximum Lyapunov exponent ) we need to solve two

coupled evolution equations :

δ̇q = +4δp − λδq ; δ̇p = −(1/4)δq − λδp → λ = (15/4)δqδp/| δ |
2 ,

subject to the fixed-length constraint δ̇qδq + δ̇pδp ≡ 0 . The maximum value, for equal

perturbations in the two directions, gives a growth rate of (15/8) . On the other hand the

unperturbed growth rate in a general direction, is (4δp,−(1/4)δq) , which has its maximum

value of 4 for a perturbation parallel to the p direction. Maximum and minimum growth

rates are time-reversible but the dependence of the Lyapunov growth and decay rates are

not. The latter rates depend upon past history, and not future destiny.

A. Nonequilibrium Examples with Weak but Stiff Control of p2 and p6

A specific ergodic system ,

q̇ = p ; ṗ = −q − ζ [ 1.5p− 0.5(p5/T 2) ] ;

ζ̇ = 1.5[ (p2/T )− 1 ]− 0.5[ (p6/T 3)− 5(p4/T 2) ] ,

exerts a passive control over the second and sixth velocity moments. Passive in that the

equations are necessarily consistent with the Gaussian distribution but are not necessarily

sufficient for that distribution to be realized. When the target temperature T (q) varies with

coordinate ,

T (q) = 1 + ǫ tanh(q) ; 0 < ǫ < 1←→ 0 < T (q) < 2 ,
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the problem can become dissipative, with the comoving phase-volume rate-of-change nega-

tive,

〈 (⊗̇/⊗) 〉 ≡ (∂q̇/∂q) + (∂ṗ/∂p) + (∂ζ̇/∂ζ) = 〈 −1.5ζ + 2.5ζ(p4/T 2) 〉 < 0 .

Sample cross-sections of the corresponding chaotic sea appear in Figure 10. At equilibrium,

not shown in the Figure, a (q, p, 0) plot would show inversion symmetry, equivalent to noting

that viewing the thermostated oscillator in a mirror would change the signs of (q, p) without

changing the friction coefficient ζ . Changing the signs of the friction coefficient and both

parameters (±ζ,±1.5,∓0.5) leaves the equations of motion unchanged.

An analytic calculation of the largest Lyapunov exponent for the (α, γ) problems illus-

trated in Figure 10 requires the solution of the three coupled linearized equations of motion

for the reference-to-satellite vector. In the p = 0 plane the equations for δ = ( δq, δp, δζ )

simplify :

{ δ̇q = δp − λ1δq ; δ̇p = −δq − 1.5ζδp − λ1δp ; δ̇ζ = −λ1δζ } .

The constraint of constant length imposed by λ1 in its role as a Lagrange multiplier, when

applied in the p = 0 plane, makes it possible to relate the sign of λ1 to that of the friction

coefficient ζ :

(d/dt)[ δ2q + δ2p + δ2ζ ] ≡ 0 −→ λ1 = −αζδ
2
p .

With α = 0.05 or 1.5 the upper half plane of the lower panels of Figures 10 and 11,

with ζ > 0 is entirely green, signifying a negative Lyapunov exponent. Positive values of λ1

indicated by red in the Figures, correspond to negative values of ζ in the p = 0 plane. As

would be expected for a “friction” coefficient negative values promote growth and positive

ones decay. As the temperature gradient increases the dissipation grows. Because the time-

averaged dissipation is necessarily positive a comoving volume element dqdpdζ vanishes with

time, exponentially fast.

B. Nonequilibrium Example with Weak Control of p2 and p4

Because the equations of motion for control of the sixth moment are stiff, requiring a

Runge-Kutta timestep of order 0.0001 or 0.0002, we consider the simpler case of passive

control of the second and fourth velocity moments :

q̇ = p ; ṗ = −q − ζ [ 0.05p+ 0.32(p3/T ) ]
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FIG. 10: Cross Sections of the Dissipative Oscillator with (α, γ) = (1.5,−0.5) . For all of the

plots the abscissa ranges from −5.0 to + 5.0 while the ordinate ranges from −4.0 to + 4.0 .

The penetrations of the ζ = 0 plane ( top panels ) corresponding to a positive largest Lyapunov

exponent are in red, with negative values in green. The penetrations of the p = 0 plane ( shown

in the lower panels ) are colored in the same way and confirm that negative values of the friction

coefficient correspond to phase-volume growth.

ζ̇ = +0.05[ (p2/T )− 1 ] + 0.32[ (p4/T 2)− 3(p2/T ) ] .

Like those controlling 〈 p2, p6 〉 these equations controlling 〈 p2, p4 〉 are ergodic at equilib-

rium, and are consistent with Gibbs’ distribution f(q, p, ζ) ∝ e−q2/2T e−p2/2T e−ζ2/2 .

Away from equilibrium, with T = 1 + ǫ tanh(q) and where tori are absent, these same

equations generate dissipative fractal attractors. For small temperature gradients the di-

mensions of the cross sections in Figure 11 and the dissipation vary smoothly while the
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FIG. 11: Cross Sections of the Dissipative Oscillator with (α, β) = (0.05, 0.32) and a friction

linear in ζ (n = 1) . For all of the plots the abscissa ranges from −5.0 to + 5.0 while the ordinate

ranges from −4.0 to + 4.0 .

motion remains ergodic. Just as in the Galton Board examples the resulting fractals signal

the rarity of nonequilibrium states.

Because the two-parameter motion equations are time-reversible there exists a symmetric

set of ζ = 0 cross-section states with reversed momenta ±p←→ ∓p , reversed heat current,

reversed dissipation, as well as phase-volume growth rather than collapse, all of these char-

acteristics violating the Second Law of Thermodynamics. But all those states are unstable,

with a reversed ( when time-averaged ) Lyapunov spectrum having a positive sum. They

make up the unobservable and illegal repellor states. The repellor acts as a source and the

attractor a sink for these time-reversible heat-flow problems. Despite their symmetry the

repellor and attractor measures are different, zero and one, respectively.
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FIG. 12: The effect of dissipation on phase-space cross sections for the chaotic, but noner-

godic, Nosé-Hoover oscillator. Sections with vanishing momentum are shown for four values of ǫ

: 0.00, 0.10, 0.20, 0.30 . The equations of motion are q̇ = p ; ṗ = −q − ζp ; ζ̇ = [ (p2/T ) − 1 ] ,

where T = 1 + ǫ tanh(q) .

The implication of Figure 11 is relatively simple. Starting out with an equilibrium dy-

namics which follows Gibbs’ canonical distribution ( without holes ) relatively simple mul-

tifractal attractors respond to a thermal gradient. Increasing the temperature gradient

leads to a reduced attractor dimensionality and increased dissipation. The general approach

of perturbing an ergodic equilibrium Gibbs’ ensemble evidently leads to relatively simple

nonequilibrium steady states. In an effort to see whether or not this simplicity has a coun-

terpart in nonergodic Hamiltonian mechanics we return to the Nosé-Hoover oscillator and

expose it to a thermal gradient next.
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C. Nonequilibrium Nosé-Hoover Oscillator Dynamics

Although the equilibrium Nosé-Hoover oscillator has all the complexity of Hamiltonian

mechanics – chains of islands and their elaborations, it is worth exploring whether or not

any simplification results away from equilibrium. Our previous work25 indicated a crude

boundary between small-gradient and large-gradient behavior around ǫ = 0.40 . In Figure

12 we consider strange-attractor solutions corresponding to three values of ǫ, 0.10, 0.20, 0.30

in addition to the equilibrium case. We use nonequilibrium versions of the Nosé-Hoover

oscillator with ζ̇ = [ (p2/T ) − 1 ] rather than ζ̇ = [ p2 − T ] because the multimoment

models are much simpler to formulate when the distribution of the friction coefficient(s) is

not explicitly temperature dependent.

We considered relatively long runs ( 1012 timesteps ) in an effort to assure convergence.

A bit more than halfway through the ǫ = 0.10 simulation, with a fourth-order Runge-Kutta

timestep of 0.01, the chaotic strange attractor suddenly began to generate a torus which

then gradually shrunk with time. Was this real, or an artefact? A check calculation with

fifth-order Runge-Kutta, also using a timestep of 0.01 revealed no such behavior, exhibiting

instead a chaotic solution. This problem illustrates the virtue of comparing results from the

two or more integrators, particularly when longer runs are desirable. A careful investigation

shows that the single-step fourth-order and fifth-order errors:

RK4 error ≃ −dt5/120 ; RK5 error ≃ +dt6/720 ,

are in opposite directions, with the fifth-order still noticeable with a timestep dt = 0.01 in

double-precision calculations. With dt = 0.001 both the fourth-order and fifth-order errors

are negligible in double-precision work. For the reader interested in exploring these small

effects26 an initial condition very close to the border between chaos and tori is (q, p, ζ) =

(δ, δ, 3) with δ small. A small nonzero value of δ ( such as 10−12 ) is necessary to avoid the

analog of a (q, p) fixed point in the (q, p, ζ = 0) cross section.

Figure 12 shows the sign of the local Lyapunov exponent λ1(t) in color, both at and away

from equilibrium ( ǫ = 0.0 to 0.3 ). Notice that the near inversion symmetry in the (q, p, 0)

plane for ǫ = 0.10 , gives way to predominating Lyapunov instability far from equilibrium,

at ǫ = 0.30 . Below, the (q, 0, ζ) plane shows that the sign of the local Lyapunov exponent

is a perfect match of the sign of the local friction coefficient. Simply reversing the direction

of the flow in the three nonequilibrium panels, corresponding to reflection of p about the q
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axis, might be expected to change the signs of the Lyapunov exponents, but even close to

equilibrium this does not happen. This is because that exponent depends upon the past so

that there is a fundamental lack of symmetry in the local exponents.

VI. LIOUVILLE’S THEOREM APPLIED TO NONEQUILIBIUM FLOWS

We have seen that the continuity equation is an invaluable tool in finding constrained

dynamical systems consistent with Gibbs’ canonical ensemble. This idea was used by Green

and Kubo to express transport coefficients in terms of equilibrium fluctuations. Nonequilib-

rium simulations, even far from equilibrium, use this same tool. Because the Galton Board

as well as all of the thermostated oscillator problems we have considered involve three-

dimensional flows it is natural to consider their analysis and display from the standpoint of

Liouville’s phase-space continuity equation :

(∂f/∂t) = −∇ · (fv)←→ ḟ = (∂f/∂t) + v · ∇f ≡ −f · ∇v ,

also in three dimensions. The corresponding motion equations are represented by v ≡

(q̇, ṗ, ζ̇) in the oscillator problems.

It is tempting to imagine solving the flow equation directly, replacing the derivatives

(q̇, ṗ, ζ̇) by finite differences. Our colleague John Ramshaw made us the welcome present of

his “upwind-differencing” computer program, which transfers density across all six faces of

each cubic computational cell according to the velocities evaluated at the cell boundaries,

determining which of any two adjacent cells is the “donor” of probability, and which is the

“acceptor”. The flow is taken to be proportional to the donor probability though it would

appear that an average probability is nearly as plausible. Using the average, however, leads

to exponential instability27. At equilibrium, or in a steady state, the six flows into and

out of every cell must balance. Evidently the algorithm conserves probability exactly, but

not time-reversibly. Liouville’s continuity equation is time-reversible. But it is easy to see

that in a reversed implementation of the flow algorithm the cells furnishing the probability

forward in time will not have it returned exactly in the “reversed” step.

The time-reversal thought experiment ( as well as its computational realization ) show

that the algorithm has a diffusive irreversibility. To see this begin with a single filled zone.

Going forward in time this zone would typically donate probability to half (three) of its
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neighbor zones. The other three neighbors would remain empty. On reversal most of the

probability gained by the three neighbors would remain there. Such a forward-plus-backward

two-timestep simulation reveals why it is that a straightforward application of Liouville’s

flow equation fails.

A simple computational test of this Liouville algorithm is to reproduce the periodic

conservative Nosé-Hoover orbit, shown in Figure 5 . The initial conditions (q, p, ζ) =

(0.00, 1.55, 0.00) generate it. Solving the Liouville equation with all of the initial density

in the cells nearest the initial condition leads to an amplitude loss proportional to the cell

size. After a few such damped oscillations the final quiescent stationary state is obtained,

with most of the density bunched near the origin. Figure 13 displays the mean values of

the finite-difference algorithm’s history for ten oscillation periods. Limit-cycle and chaotic

problems lead to very similar results.

A better rendition of the continuum motion equations could follow a set of Lagrangian

points, attracted toward one another with a Lagrange multiplier designed to follow the co-

moving flow volume precisely. Similar algorithms, based on interface tracking could perhaps

be developed, but in the end the numerical solution of Liouville’s continuity equation appears

much better suited to developing consistent motion equations than to evolving a continuous

phase-space density.

VII. ANALOGIES WITH MANY-BODY PROBLEMS

Over the years thousands of papers have described the use of time-reversible control

variables to solve simple problems. Shear flows, heat flows, and shockwaves are examples

that spring to our minds. Large-scale biomolecular simulations use exactly these same

ideas. In stationary nonequilibrium flows the atomistic forces are supplemented by boundary,

constraint, and driving forces in such a way as to generate a nonequilibrium steady state.

In every case the resulting phase-space distribution is fractal, representing a flow from a

strange repellor, with a positive summed Lyapunov spectrum to a strange attractor, with

a negative Lyapunov sum. Although the fundamentals are no more complicated than the

examples detailed in this paper, the possibilities for more complex applications are and will

continue unlimited.
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FIG. 13: The Nosé-Hoover periodic orbit with T = 1 , as in Figure 5 , is shown in red, with a

bullet indicating the initial condition, (q, p, ζ) = (0.00, 1.55, 0.00) . The finite-difference Liouville

continuity equation solution for 〈 p(〈 q 〉) 〉 is shown for a time of 55.78, ten oscillation periods, in

black, using a 40× 40 × 40 mesh with a mesh spacing of 0.1 . Solutions with three finer meshes (

0.0500, 0.0250, 0.0125 ) establish that the artificial damping is proportional to the mesh size as

is shown in John Ramshaw’s book, Elements of Computational Fluid Dynamics27.
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