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Abstract

Considerable research has led to ergodic isothermal dynamics which can replicate Gibbs’ canoni-

cal distribution for simple ( small ) dynamical problems. Adding one or two thermostat forces to the

Hamiltonian motion equations can give an ergodic isothermal dynamics to a harmonic oscillator, to

a quartic oscillator, and even to the “Mexican-Hat” ( double-well ) potential problem. We consider

here a time-reversible dynamical approach to Gibbs’ “microcanonical” ( isoenergetic ) distribution

for simple systems. To enable isoenergetic ergodicity we add occasional random rotations to the

velocities. This idea conserves energy exactly and can be made to cover the entire energy shell

with an ergodic dynamics. We entirely avoid the Poincaré-section holes and island chains typical

of Hamiltonian chaos. We illustrate this idea for the simplest possible two-dimensional example, a

single particle moving in a periodic square-lattice array of scatterers, the “cell model”.
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I. INTRODUCTION

In 1984 Shuichi Nosé discovered a dynamics consistent with Gibbs’ canonical ensemble1,2

at a fixed temperature T . Nosé’s idea, applied to N unit-mass particles with coordinates

and momenta { q; p } is most simply implemented with the Nosé-Hoover motion equations3:

{ q̇ = p ; ṗ = F − ζp } ; ζ̇ =

N
∑

[ (p2/T )− 1 ]/Nτ 2 [ Thermostatted Dynamics ] .

The additional single “thermostat variable” ζ is a “friction coefficient”. When negative it

injects kinetic energy into the (q, p) system. When positive, kinetic energy is extracted. This

integral-feedback form of the motion equations has been selected to be exactly consistent

with Gibbs’ canonical distribution, f(q, p) ∝ e−H/kT , as one of us pointed out in 19853.

The independent variable in the canonical ensemble is the mean value of the kinetic energy,

K(p) =
∑

(p2/2m) ≡
∑

(p2/2). In D spatial dimensions the kinetic energy corresponds to

Gibbs’ ( kinetic ) temperature, 2K = DkT ≡ DT . Throughout our work we set the particle

mass m and Boltzmann’s constant k both equal to unity, for simplicity.

Nosé’s original work used Hamiltonian mechanics. It soon became evident that his ther-

mostatted motion equations were not “ergodic”. That is, the (q, p) phase-space states gener-

ated by his equations of motion failed to sample the entire phase space and instead sampled

only a subspace determined by the initial conditions. Just as in conventional Hamiltonian

mechanics two kinds of solutions of Nosé’s equations of motion were found, regular solutions,

corresponding to simple tori in the phase space, and chaotic Lyapunov-unstable solutions,

forming a fat-fractal “chaotic sea”. Several years later two-thermostat motion equations were

developed. Applied to the harmonic oscillator4,5 their solutions matched Gibbs’ canonical

distribution with an ergodic “chaotic sea” and without any regular toroidal solutions.

Much later6,7 ergodic solutions with only a single thermostat variable were discovered.

One was found as the result of a two-parameter computerized search6 :

{ q̇ = p ; ṗ = −q − 0.05ζp− 0.32ζ(p3/T ) } ;

ζ̇ = 0.05[ (p2/T )− 1 ] + 0.32[ (p4/T 2)− 3(p2/T ) ] [ 0532 Model ] .

A more general one-parameter thermostat, able to generate ergodic solutions to the quartic-
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FIG. 1: Cell-Model dynamics with four fixed soft-disk scatterers at the corners of a 2× 2 periodic

cell. For the initial condition q = (0, 0) ; p = (0.6, 0.8) 200,000 projections from 200,000,000

timesteps, fourth-order Runge-Kutta, equally spaced in time with ∆t = 1000dt = 1, are shown

at the left. At the right the initial momenta are (0.999,
√
1− 0.9992) . Evidently this Newtonian

problem is not ergodic. The black quadrant lines border the accessible regions where the forces are

nonzero. In the central diamond-shaped region the scatterer forces all vanish.

well and Mexican-Hat double-well problems as well as the oscillator, was developed by

Tapias, Bravetti, and Sanders as their solution of the 2016 Snook Prize problem7 :

q̈ = −q − 2αq̇ tanh(αζ) ; ζ̇ = q̇2 − 1 .

There are several tests that a set of motion equations must pass to establish its ergodic-

ity. Any ergodic canonical dynamics algorithm must follow Gibbs’ measure in phase space,

fGibbs(q, p) = e−H/T /
∫

dq
∫

dpe−H/T . Such an algorithm must also generate the canonical

averages of the various moments of the potential and kinetic energies. For the canonical

oscillator problem the first few nonvanishing moments are the following :

〈 q2, p2 ; q4, q2p2, p4 ; q6 . . . 〉 = T, T ; 3T 2, T 2, 3T 2 ; 15T 3 . . . .

The Kolmogorov-Arnold-Moser Theorem indicates that molecular dynamics is seldom

ergodic, though the consequences of that lack are thought to be small in most cases. A clear

lack of ergodicity is shown in Figure 1, where a single mass point moves in a periodic 2× 2

square. Whenever the moving particle comes closer to one of the scatterers, with r < 1 that

scatterer exerts a smooth repulsive force :

φ(r < 1) = (1− r2)4 ←→ Fx = −8x(1− r2)3 ; Fy = −8y(1− r2)3 [ r < 1 ] .
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Although the 200,000 (x, y) trajectory points appear to cover the space homogeneously at

the left, a glancing initial condition is not ergodic and generates the 200,000-point torus

shown at the right. At the right px remains positive forever !

Ergodicity also implies that any initial condition must lead to the same time-averaged

value of the largest Lyapunov exponent, λ1 = 〈 λ1(t) 〉 . This time-averaged exponent

describes the rate at which the separation of two nearby phase-space trajectories tends to

increase8,9:

δ̇ = λ1(t)δ ; δ ≡
√

∑

(δ2q + δ2p) .

II. ERGODICITY VIA ISOENERGETIC ROTATIONS OF THE MOMENTA

Although one might think, as we did, that continuous ( but small ) Coriolis accelerations,

(ṗx, ṗy) ∝ (+py,−px)

would lead to ergodicity, trials of this idea were unsuccessful. This failure led us to a

successful and simpler conservative approach to ergodicity. We used discontinuous, rather

than smooth, random rotations of the moving particle’s momentum. Let us indicate the

change of momentum in two spatial dimensions :

(px, py) ∝ (cos[θ + δθ], sin[θ + δθ]) ; δθ ∝ [ R− (1/2) ] with R = rund(intx, inty) .

The random numbers { 0 ≤ R < 1 } come from a simple time-reversible10 generator :

i = 1029*intx + 1731

j = i + 1029*inty + 507*intx - 1731

intx = mod(i,2048)

j = j + (i - intx)/2048

inty = mod(j,2048)

rund = (intx + 2048*inty)/4194304.0d0

Because only the magnitude and not the orientation of a particle’s momentum contributes

to the energy such an algorithm is easily implemented. We have confirmed that even the

smallest of systems can be made ergodic in this way, as indicated by the cell-model results in

4



FIG. 2: The two 2×2 Poincaré sections shown here are equally likely Cell-Model states with px = 0.

Unlike the uniform density of Figure 1 there is no density at all in the central diamond, where the

forces vanish, and the probability on the section is maximized along with the magnitude of the force

at the scatterer boundaries where the velocity vanishes. Here the initial condition corresponds to

the right panel of Figure 1, (px, py) = (0.999,
√
1− 0.9992). The trajectory undergoes a random

change of direction every ten timesteps at the left and every thousand at the right. The Sections

shown, 182,749 points at the left and 183,342 points at the right correspond to one billion timesteps,

0 < time < 1, 000, 000 = 1, 000, 000, 000dt .

the following Section. Because the orientations of the single-particle momenta can be chosen

or changed randomly we refer to the corresponding algorithm as a “Monte-Carlo” method,

following the tradition of Metropolis, in his work with the Rosenbluths and Tellers11.

III. GENERATION OF MICROCANONICAL POINCARÉ SECTIONS

Figure 2 shows two (px = 0) sections obtained from Monte-Carlo evaluations of the

microcanonical phase-space density for a moving particle with E = Φ + K = (1/2). The

cell-model potential energy Φ describes the interaction of the moving or “wanderer” particle

with four soft-disk scatterers at { ±1,±1 }, the four vertices of a 2 × 2 square. The pair

potential governing the scattering is φ = (1 − r2)4 . Rather than show numerically that

the entire microcanonical distribution is achieved in this way we will rely instead on the

Metropolis, Rosenbluths, and Tellers proof of convergence of their canonical algorithm11 :

“Since a particle is allowed to move to any point within a square of side 2 with

a finite probability, it is clear that a large enough number of moves will enable

it to reach any point in the complete square. Since this is true of all particles,

we may reach any point in configuration space. Hence, the method is ergodic.”

The simplicity of this algorithm recommends its use.
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FIG. 3: The two 2× 2 Poincaré sections (x, y, px ≡ 0, py) shown here result from simulations using

twenty billion timesteps ( an elapsed time of 2× 107 ). At the left is the px = 0 section according

to classical mechanics with initial condition (x, y, px, py) = (0, 0, 0.6, 0.8). At the right the velocity

vector undergoes a random rotation of R− (1/2) radians after every thousand timesteps. Notice

that the grooves of excluded states near x ≃ ±0.17 are eliminated by these rotations. Both of these

sections contain about 3.7 million points.

IV. POINCARÉ SECTIONS WITH AND WITHOUT ROTATIONS

Figure 3 shows the nonergodic distribution of Poincaré-section points resulting from a

Runge-Kutta solution of the Hamiltonian motion equations with dt = 0.001 (at the left) and

an ergodic distribution resulting from occasional random rotations of the velocity vector.

The main difference in the sections are the four missing grooves of points with x ≃ ±0.17 .

The corresponding py = 0 sections show four symmetric missing grooves with y ≃ ±0.17 .

V. CONCLUSION

Classical Hamiltonian mechanics is typically not ergodic. In systems small enough for a

thorough evaluation of phase-space density simple random velocity rotations can access the

missing states which are to be expected as a consequence of the Kolmogorov-Arnold-Moser

Theorem. A consequence of this computational ergodicity is that Gibbs’ statistical mechan-

ics ( averaging over all energy states ) can agree precisely with rotationally randomized

classical mechanics.
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