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Abstract

Some paradoxical aspects of the Nosé and Nosé-Hoover dynamics of 1984 and Dettmann’s dynam-

ics of 1996 are elucidated. Phase-space descriptions of thermostated harmonic oscillator dynamics

can be simultaneously expanding, incompressible, or contracting, as is described here by a vari-

ety of three- and four-dimensional phase-space models. These findings illustrate some surprising

consequences when Liouville’s continuity equation is applied to Hamiltonian flows.
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I. INTRODUCTION TO HARMONIC OSCILLATOR MODELS

In 1984 Shuichi Nosé noticed that introducing a scale factor s into the momenta made

it possible to convert Gibbs’ microcanonical distribution to the canonical one1,2 provided

that [ 1 ] the “time-scaling factor” s was governed by a temperature-dependent logarithmic

potential and [ 2 ] the equations of motion ( assumed ergodic ) for the coordinates { q } and

momenta { p } were multiplied by s. In principle and in practice this development made it

possible to generate a dynamics consistent with the canonical ensemble, for systems small

and large. And for ergodic systems such a dynamics, with the weights of dynamical states

given by the Boltzmann factor f(q, p) ∝ e−H/kT , can closely approximate the predictions of

Gibbs’ canonical ensemble.

Hoover soon pointed out that the time-scaling factor s was completely extraneous. He

showed that the very same isothermal equations of motion could be derived directly from

the phase space continuity equation,

(ḟ /f) = −(⊗̇/⊗) ≡ −
∑

[ (∂q̇/∂q) + (∂ṗ/∂p) ]

without introducing time scaling3,4. Here f is probability density and ⊗ represents an

infinitesimal comoving phase volume. In Hoover’s adaptation of Nosé’s approach,“Nosé-

Hoover dynamics”, the momentum conjugate to s appears as a friction coefficient ζ . ζ

controls the dynamics via integral feedback using a target value of the kinetic temperature

mkT ≡ 〈 p2 〉. Here k is Boltzmann’s constant and m is a particle’s mass. Hoover found that

the oscillator was far from ergodic. With Posch and Vesely he demonstrated the presence of

a modest chaotic sea ( six percent of the stationary solution ) for the oscillator in addition

to the preponderant ( 94% ) quasiperiodic toroidal solutions4,5. For the oscillator Nosé’s

Hamiltonian ( with ζ = ps ) is :

HNosé = [ q2 + (p/s)2 + ln(s2) + ζ2 ]/2 .

For simplicity we choose m, k, and the oscillator force constant all equal to unity.

In 1996 Carl Dettmann showed that the Nosé-Hoover equations of motion can be derived

from a scaled Hamiltonian, provided that the energy itself is set equal to zero6,7.

HDettmann ≡ sHNosé ≡ 0 .
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These novel and surprising ideas are most easily displayed, illustrated, and understood by ap-

plying them again to the simplest possible problem, a one-dimensional harmonic oscillator3,4.

Despite its lack of ergodicity such an oscillator provides a surprising source of topological

variety, including intricately knotted phase-space trajectories ! Thus it has captured the

attention of mathematicians as well as physicists and chemists8–13.

Our purpose here is entirely pedagogical. We focus on some surprising qualitative dif-

ferences among the three- and four-dimensional flows described by Nosé, Dettmann, and

Nosé-Hoover dynamics. Each of them can be analyzed in a four-dimensional (q, p, s, ζ)

phase space, or in a three-dimensional subspace corresponding to the restriction of constant

energy. Liouville’s Theorem, that Hamiltonian flows are incompressible, is a straightforward

consequence of the motion equations :

{ q̇ = (∂H/∂p) ; ṗ+−(∂H/∂q) } −→ ḟ = (∂f/∂t) +
∑

q̇(∂f/∂q) + ṗ(∂f/∂p) ≡ 0 .

The Nosé (s0) and Dettmann (s1) oscillator Hamiltonians differ by just a factor s :

HN,D = (s0,1/2)[ q2 + (p/s)2 + ln(s2) + ζ2 ] ≡ 0 ; ζ ≡ ps .

In both cases the resulting constant-energy dynamics develop in a three-dimensional con-

strained phase space. For instance we can choose a space described by the coordinate q,

scaled momentum (p/s), and friction coefficient ζ . With the energy fixed any one of the four

variables (q, p, s, ζ) can be determined from a convenient form of the constraint conditions :

s = e−(1/2)[ q2+(p/s)2+ζ2 ] .

It is convenient to specify (q, p/s, ζ) and then to select s to satisfy the H ≡ 0 constraints.

A consequence of the Dettmann multiplier s1 is the simple relationship linking solutions of

the Nosé and Dettmann Hamiltonians :

(q̇, d
dt
(p/s), ζ̇)Dettmann ≡ s(q̇, d

dt
(p/s), ζ̇)Nosé .

The Nosé and Dettmann trajectories are identical in shape but are traveled at different

speeds.

It is tempting to think that the time spent in the volume element dqd(p/s)dζ in the

Dettmann case is proportional to (1/s) ≡ e+(q2+(p/s)2+ζ2)/2 compared to the Nosé case. But

this relative probability of e+H/kT is the reciprocal of what we would ( naively ) expect.
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FIG. 1: To the left we see two quartic oscillator trajectories in the (q, p) phase space. The initial

states are (0, 0.9) and (0, 1.1). The trajectories include 5000 fourth-order Runge-Kutta timesteps

with dt = 0.001. The Hamiltonian is H = (q4/4)+(p2/2). Because frequency increases with energy

a constant comoving area shears as time progresses. Although both f(q, p, t) and ⊗(q, p, t) are

constants of the motion, obeying Liouville’s Theorem, the phase-space speed,
√

q̇2 + ṗ2 =
√

p2 + q6

is far from constant, as is shown to the right in the Figure for the two trajectories..

Evidently the time argument is false. To see why, consider the Hamiltonian motion of

a quartic oscillator with H = (p/2) + (q4/4) . Both the phase-space trajectory and the

phase-space speed,
√
q̇2 + ṗ2 are shown in Figure 1. Though the Hamiltonian is constant,

the speed in phase space,
√
q6 + p2 varies. Liouville’s Theorem correctly shows that the

probability density f and the comoving area ⊗ are both constants along a trajectory. But,

because the shape of the area varies with time there is no simple link between speed and f

or ⊗. It is the changing width of a comoving element perpendicular to the trajectory that

destroys the supposed connection between speed and probability.

Our goal here is simply to point out this complex relationship between speed and proba-

bility in the simplest possible example. The difference can be even more dramatic in three-

and four-dimensional problems. Let us look at the simplest such example problem in or-

der to enrich our understanding. Consider the smallest periodic orbit traced out by the

Dettmann, Nosé, and Nosé-Hoover equations of motion. We choose to begin the orbit with

a higher kinetic energy, 1.552/2, than the target value of 1/2. With the initial conditions

(q, p/s, ζ) = (0, 1.55, 0) we find s =
√
e−1.552 = 0.30082 → p = 0.46627 so that the initial
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condition (q, p, s, ζ) = (0, 0.46627, 0.30082, 0)→ H = 0.

II. AN EXPANDING MODEL IN FOUR DIMENSIONS

Nosé’s Hamiltonian, HN = (1/2)[ q2 + (p/s)2 + ln(s2) + ζ2 ], followed by time-scaling,

leads to four equations of motion in (q, p, s, ζ) space:

{ q̇ = p/s ; ṗ = −sq ; ṡ = sζ ; ζ̇ = [ (p/s)2 − 1 ] } → (∂ṡ/∂s) = +ζ .

Exactly these same motion equations follow more simply from Dettmann’s Hamiltonian, with

no need of time scaling. Because our initial condition has a higher “temperature” 〈 (p/s)2 〉
than the target of unity, the short-time friction coefficient ζ becomes positive, suggesting,

from ṡ = sζ that Nosé’s (or Dettmann’s ) oscillator’s phase volume begins by expanding

rather than contracting. This expansion with a positive friction seems counter to Liouville’s

Theorem, suggesting a paradox. Figure 2 shows the details of this four-dimensional prob-

lem. The time scaling factor s is precisely equal to Gibbs’ canonical probability density.

With the short-time positive friction, ζ > 0, the flow does contract rather than expand. Let

us investigate this intriguing problem further.

III. AN INCOMPRESSIBLE MODEL ?

Dettmann’s Hamiltonian, HD = (s/2)[ q2 + (p/s)2 + ln(s2) + ζ2 ], with the constraint

HD ≡ 0 imposed in the initial conditions, is not really incompressible :

{ q̇ = p/s ; ṗ = −sq ; ṡ = sζ ; ζ̇ = −(1/2)[ q2 − (p/s)2 + ln(s2) + ζ2 ]− 1 } →

(∂ṡ/∂s) + (∂ζ̇/∂ζ) = +ζ − ζ = 0 [ Incompressible? ] .

The flow equations certainly maintain a comoving four-dimensional hypervolume un-

changed in size. This is nothing more than the usual application of Liouville’s Theorem and

is no surprise. But taking the zero energy constraint into account reduces the flow to three

phase-space dimensions, as in the Nosé-Hoover picture. Let us look at that picture next.

The quantitative details of the evolving phase probability are shown in Figure 3.
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FIG. 2: The time variation of two expressions for the probability density f as measured once

around a periodic orbit generated with Dettmann’s (or Nosé’s, with time scaling) Hamiltonian in

the four-dimensional (q, p, s, ζ) phase space. The initial conditions are (0, 0.46627, 0.30082, 0) so

that initially the scaled momentum is (p/s) = 1.55 and the Hamiltonian vanishes. The thicker line

is Gibbs’ canonical-ensemble density e−[ q2+(p/s)2+ζ2−1.552 ]/2. The thinner white line overlaying the

thicker black one shows the progress of the “time-scaling factor” s(t)/s(0) = e
∫

t

0
ζ(t′)dt′ . The perfect

agreement demonstrates that the phase-space density f(q, p, ζ) can be obtained by measuring the

phase-space compression ( but not the speed ) along the four-dimensional Hamiltonian trajectory

with Dettmann’s constraint, HD ≡ 0 . But the early-time association of increasing phase volume,

expected from (∂ṡ/∂s) = ζ > 0, is indeed paradoxical.

IV. A CONTRACTING MODEL IN THREE DIMENSIONS

Here either Nosé-Hoover dynamics or a three-dimensional version of Dettmann’s Hamilto-

nian, including the constant-energy constraint, gives the same results. A time-reversible fric-

tional force, −ζp, provides a steady-state Gaussian phase-space distribution e−[ q2+p2+ζ2 ]/2 .

In the two versions of dynamics the friction coefficient ζ is determined by integral feedback

:

{ q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − 1 } −→ (∂ṗ/∂p) = −ζ .

Dettmann’s motion equations are identical to these if his scaled momentum (p/s) is replaced

by the symbol p. Here, with the relatively “hot” initial condition, the three-dimensional

phase-space volume shrinks (correctly) initially due to contraction parallel to the momentum

axis. So, for the three phase-space descriptions of the same physical problem we have found

expansion, incompressibility, and compression, all for exactly the same phase-space states.
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FIG. 3: Two probability densities as measured once around a periodic Nosé-Hoover orbit in three-

dimensional (q, p, ζ) space. The initial values are (q, p, ζ) = (0, 1.55, 0). The thicker line is Gibbs’

canonical e−(q2+p2+ζ2)/2. The overlaying thinner white line is e
∫

t

0
ζ(t′)dt′e−1.552/2. Here the per-

fect agreement shows that the integrated three-dimensional phase-space compression corresponds

precisely to Gibbs’ canonical distribution.

We put these three examples forward from the standpoint of pedagogy, as a useful and

memorable introduction to the significance of Liouville’s Theorem for isoenergetic flows.

The constraint of constant energy can lead to qualitative differences in the evolution of f

and ⊗.
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12 X. S. Yang, “Qualitative Analysis of the Nosé-Hoover Oscillator”, Qualitative Theory of Dy-

namical Systems (submitted, 2019).

13 W. G. Hoover, J. C. Sprott, and C. G. Hoover, “The Nosé-Hoover, Dettmann, and Hoover-
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