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Abstract

Aspects of the Nosé and Nosé-Hoover dynamics developed in 1983-1984 along with Dettmann’s

closely related dynamics of 1996, are considered. We emphasize paradoxes associated with Liou-

ville’s Theorem. Our account is pedagogical, focused on the harmonic oscillator for simplicity,

though exactly the same ideas can be, and have been, applied to manybody systems. Nosé,

Nosé-Hoover, and Dettmann flows were all developed in order to access Gibbs’ canonical ensem-

ble directly from molecular dynamics. Unlike Monte Carlo algorithms dynamical flow models are

often not ergodic and so can fail to reproduce Gibbs’ ensembles. Accordingly we include a discus-

sion of ergodicity, the visiting of all relevant microstates corresponding to the desired ensemble.

We consider Lyapunov instability too, the usual mechanism for phase-space mixing. We show

that thermostated harmonic oscillator dynamics can be simultaneously expanding, incompressible,

or contracting, depending upon the chosen “phase space”. The fractal nature of nonequilibrium

flows is also illustrated for two simple two-dimensional models, the hard-disk-based Galton Board

and the time-reversible Baker Map. The simultaneous treatment of flows as one-dimensional and

many-dimensional suggests some interesting topological problems for future investigations.
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I. INTRODUCTION: A SUMMARY OF DYNAMICAL MILESTONES

Gibbs’ formulation of statistical mechanics uses averages over all of phase space as pre-

dictors of equilibrium behavior. Metropolis, the Rosenbluths, and the Tellers implemented

Gibbs’ program with their “Monte Carlo” algorithm1. They emphasized that their algo-

rithm is ergodic, capable of covering all of phase space, and applied it successfully to the

equation of state of hard disks. Gibbs showed that phase-space averages over “all states”

could be used to calculate properties of systems at constant energy, or, by weighting the

states differently, at constant temperature or pressure or both. Some 50 years later, comput-

ers made it possible to compute such averages numerically, at first for very small systems.

This was accomplished by moving particles with probabilities corresponding to the intended

ensemble1. We provide two educational examples of Monte Carlo simulation in Section II.

Berni Alder and Tom Wainwright developed “Molecular Dynamics” shortly thereafter2.

The two methods agreed well for fixed-energy hard-sphere systems at equilibrium. Fixed-

temperature Monte Carlo simulation is limited to equilibrium problems. Equilibrium Monte

Carlo simulations had no precise dynamical analog until Nosé’s innovative work of 19843–6.

“Nonequilibrium Molecular Dynamics”, which could deal with flows of momentum and en-

ergy, had been developed in the 1970s7. The velocities, kinetic temperatures, and heat fluxes

could all be controlled by brute-force adjusting and rescaling. The resulting fixed moments

of the distribution turned out to promote viscous and thermal flows in line with hydrody-

namic expectations in relatively small systems, with only a few or at most a few hundred

interacting particles. We describe some equilibrium example flows in Section III. It was

discovered that the brute-force rescaling was equivalent to linear feedback control of the mo-

menta in the differential equations governing particle motion. We illustrate this equivalence

in Section IV and introduce the Galton Board problem as the prototype example.

In 1984 Shuichi Nosé formulated a particle mechanics consistent with Gibbs’ canonical

ensemble. His work was grounded in Hamiltonian mechanics but with a novel addition

designed to promote energy mixing. Nosé’s mechanism for mixing states of different energies

was an external “time-scaling” variable s. A dozen years later Dettmann discovered that

s can best be interpreted as the phase-space probability density, s = f(q, p, ζ), where the

“friction coefficient” ζ in Nosé’s work is the momentum conjugate to s, ps = ζ . This same

notion was independently discovered three years later by Bond, Leimkuhler, and Laird8.

2



Their work attracted Nosé’s interest more strongly than had Dettmann’s7,9,10, which Bill

had discussed with Nosé in 1996. Nosé’s 1984 work and Dettmann’s 1996 achievement are

detailed in Section V.

Meeting Nosé in Paris in 1984 Bill Hoover developed a flow-based model, like Liouville’s

Theorem for incompressible Hamiltonian flows, but applying to compressible flows of just

the kind invented by Nosé. Hoover emphasized the usefulness of the harmonic oscillator

in understanding Nosé’s approach5. The simplicity of that model led to its independent

rediscovery by Sprott a decade later11,12. We adopt that same model here as our primary

pedagogical tool. The simplest possible thermostating mechanism, linear feedback, gave rise

to a Gaussian distribution for the friction coefficient ζ = ps, as is described in Section V.

Thermostating from a more general viewpoint, using higher moments, was glimpsed by

Hoover in 198513, and treated comprehensively in a pair of important papers14 by Bauer,

Bulgac, and Kusnezov in the early 90s. The 2015 (Ian) Snook Prize problem led Tapias,

Bravetti, and Sanders15 to a “Logistic” thermostat with an arctangent switch between the

heating and cooling functions of their external frictional control variable. Their work was

soon elaborated by Sprott16, who considered on-off “bang-bang” control of temperature and

showed numerically that the resulting control variable has a singular exponential distribution

in this limit rather than the Gaussian distribution resulting from Nosé’s integral control.

These ideas are also illustrated in Section V.

In Section VI we illustrate and discuss a paradox involving three descriptions of the

Nosé-Hoover oscillator flow. These suggest (wrongly, of course) that the same flow can be

simultaneously expanding, contracting, or incompressible, depending upon the coordinates

used to describe the flow.

Section VII provides our views on numerical methods, developed over 40 years, and in-

fluenced particularly by our colleague Clint Sprott17, whose imaginative use of color has

provided a powerful adjunct to the understanding of nonlinear flows. Because bifurcation

and chaos is necessary to any statistical view of dynamical systems we include the charac-

terization of flows in terms of their Lyapunov spectra in this Section.

Sections VIII and IX deal with our general conclusions concerning the simulation of

nonequilibrium steady states, the formation of fractal repellors and attractors and the asso-

ciation of the macroscopic Second Law of Thermodynamics with microscopic thermostated

models.
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Our final Section X is a bit speculative, as must be any view of the future, and suggests

that the fractal geometry of nonlinear chaotic flows still holds more interesting lessons for

us. We stress the difference between the continuous, paradoxical, and contentious view of

mathematics and the discrete grid-based approach of computational statistical mechanics.
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II. MONTE CARLO AS DEVELOPED IN THE 1950S

As computer hardware improved in the American National Laboratories, predominantly

at Los Alamos and Livermore, the applications became scientifically interesting. In the

decade following the Second World War both Enrico Fermi and Edward Teller became

interested in developing computer applications to problems with statistical mechanical roots.

For the first time manybody problems and problems involving billions of operations became

tractable. The Monte Carlo technique1 was developed at the Los Alamos laboratory, with

equation of state results calculated in the early 1950s followed soon after by dynamical

studies of one-dimensional anharmonic chains, the “Fermi-Pasta-Ulam problem”, by 195318.

That innovative work was soon followed by Alder andWainwright’s dynamical studies of hard

disks and spheres19 complemented by Wood and Jacobsen’s Monte Carlo simulations of these

same systems20. Let us next look at two illustrative examples of the Monte Carlo simulation

technique with two simple systems, the harmonic oscillator and its quartic-oscillator relative.

A. Monte Carlo Evaluation of Canonical Harmonic Oscillator Moments

As a warmup demonstration problem let us apply the Monte Carlo method to a test

problem with well-known dynamical and ensemble-averaged answers, the one-dimensional

harmonic oscillator. As usual we choose the mass, force constant, temperature, and Boltz-

nann’s constant all equal to unity. Gibbs’ canonical phase-space distribution for the oscillator

coordinate-momentum (q, p) pair, is the simple Gaussian : f(q, p) = e−(q2+p2)/2/(2π). The

resulting mean values of the even moments of q and p are products of the odd integers :

〈 q2, p2, q4, p4, q6, p6, q8, p8 . . . 〉 = 1, 1, 3, 3, 15, 15, 105, 105, . . . .

Metropolis’ group published the method in 19531–(and there is some controversy as to the

relative contributions of the five researchers)18. They pointed out that a detailed balance

between two states of energy Ei, Ej with relative probabilities obeying Gibbs’ canonical

(exponential) distribution, fi/fj = e−Ei+Ej , can be achieved by an imaginary equilibrium

dynamics, a “Monte Carlo simulation”, in which changes of state occur at a definite rate.

Consider just one pair of energy states. If the transition rate from the lower state (say the

ith state) is less than that from the higher state by a factor eEj−Ei, just offsetting the relative

probabilities of the states, a stationary state results. This state has the desired canonical
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ratio, fi/fj = e−Ei+Ej . If this can be achieved for all pairs of states, and all such pairs

are accessible, then Gibbs’ canonical ensemble can be realized numerically, as a limiting

case. As the number of states is astronomical, for even a one-body system, it is necessary to

understand the convergence rate of Monte Carlo simulations. Let us pursue the oscillator

problem with its known canonical distribution of the coordinate, e−q2/2/
√
2π.

A Monte Carlo program implementing this idea for the oscillator coordinate causes a

single test oscillator to make random jumps within a spatial interval −J < dq < +J . The

jump dq occurs with probability 1 if the energy drops and with a lesser probability e−δE if

it rises. The uphill jump with probability e−δE is implemented by choosing an additional

random number 0 < R < 1 and accepting the move when R is sufficiently small, R < e−δE .

This single-particle oscillator program needs two random numbers when the new energy

is higher—one for the jump and one for the acceptance test. Only one random number is

needed (for the jump alone) when the energy is lower. The heart of the program can be

summarized by a single line of pseudocode :

if((Enew.lt.Eold).or.(rund(intx,inty).lt.dexp(-Enew+Eold))) qold = qnew

We wrote such a billion-jump program using the following simple generator

rund(intx,inty), where the two arguments are the “seeds” of the random number rund.

As the routine is called the corresponding sequence of intx and inty values goes through all

4,194,304 combinations 0 ≤ (intx, inty) ≤ 2047. We began with (intx,inty) both zero.

These seeds change each time a new number is generated. Here is rund :

i = 1029*intx + 1731

j = i + 1029*inty + 507*intx - 1731

intx = mod(i,2048)

j = j + (i - intx)/2048

inty = mod(j,2048)

rund = (intx + 2048*inty)/4194304.d00

This choice reproduces the second and fourth moments 〈 q2, q4 〉 within 0.01 for maximum

jump lengths J of 1, 2, or 4, where [−J < dq < +J ]. The mean squared jump length 〈 dq2 〉
was 0.61 for J = 2, 0.87 for J = 4, and 0.53 for J = 8, suggesting that the relatively large

jump-length interval with J = 4 is best from the standpoint of phase-space exploration.
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A longer run of one billion Monte Carlo steps with J = 1/2 revealed an interesting

oscillation in the fourth moment, 〈 q4 〉, with a periodic duration of roughly 30 million

steps. The long-time mean value of that fourth moment appears to be converging in the

neighborhood of 2.983 rather than exactly 3. The relatively short period and the half-percent

error in the moment suggest that the rund generator is not well suited to this type of Monte

Carlo simulation.

The built-in gfortran generator, rand(intx) is arguably better, but still far from perfect.

With rand a ten-billion step run reveals a period on the order of one billion steps converging

in the neighborhood of 〈 q4 〉 = 2.9984. A similar run, but discarding the first 108 random

numbers, leads to a similar period with apparent convergence to 2.9985. Finally, a program

using pairs of random numbers for each step (an effort to enhance and better characterize

periodicity) gave apparent convergence to 3.00007, again with oscillation periods of about

one billion steps. A careful look revealed that the sequence of random numbers produced by

rand repeats precisely after 715,827,882 calls and evidently creates a resonant periodicity,

with that same frequency, in the oscillator itself.

This same strategy, accepting moves raising the potential energy with relative probabil-

ity e−δE has been successfully applied to manybody problems ever since Metropolis’ work.

Such Monte Carlo sampling is not extendable to “nonequilibrium” simulations (those with

specified velocity or temperature gradients for example) while Nosé’s method is21. By sim-

ulating random jumps in phase space the Monte Carlo approach automatically accesses

configurations over a wide range of potential energies.

This harmonic oscillator example teaches an important lesson: test random number im-

plementations with a few simple applications having known answers prior to embarking on

a “new” type of simulation. In Section VIII we will use “Random Number(r)”, a better

FORTRAN random number generator, in another Monte Carlo application.

B. Monte Carlo Construction of Quartic Oscillator Ensembles

Another application of the Monte Carlo method is the construction of small-system Gibbs’

ensembles for given values of the energy or temperature. Although dynamical techniques

able to generate such an ensemble from a single trajectory were a long time in coming,

the statistical mechanics of ensembles is an excellent fit with Monte Carlo techniques. Let
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      FIG. 1: The random number generator rund used to generate the ersatz microcanonical (at the

left) and canonical (at the right) distributions shows serial correlation in both cases. The flaws can

be seen easily in an enlarged view of this Figure. Discarding every third of the random numbers

improves the situation, as can be seen in the canonical results to the right. Each plot contains

10,000 points.

us illustrate this idea for the example of a quartic oscillator, with the Hamiltonian H4 =

(q4/4) + (p2/2).

Figure 1 shows two versions of quartic-oscillator Monte Carlo ensembles. In the first

(q, p) pairs come from the random number generator rund(intx,inty), with energies up to

(q4/4) + (p2/2) = 5, selected from within the randomly accessed rectangle

[ − 4
√
20 < q < +

4
√
20 ; −

√
10 < p < +

√
10 ] .

Enlargement shows several line segments in the microcanonical distribution at top left, indi-

cating correlation, greatly reduced by discarding every third random number. The canonical

distribution at the right, with the same number of accepted points (10,000) was generated

by accepting random choices in a larger rectangle, −10 < (q, p) < +10 with probability

e−(q4/4+p2/2) by accepting (q, p) whenever R < e−(q4/4+p2/2). This example, like the har-

monic moments simulation, is interesting in that both of them point out shortcomings of

rund(intx,inty). Though the correlations are too small to see here at the scale of the

microcanonical case, they are quite obvious in the canonical ensemble sample at the upper

right. For most purposes this same rund(intx,inty) generator is perfectly adequate.
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III. MOLECULAR DYNAMICS FROM THE 1950S

Gibbs’ statistical mechanics is equilibrium-based. Its simplest “microcanonical ensemble”

formulation describes many similar microscopic { q, p } copies ( the “ensemble” ) of a fixed

mass of fluid confined to a periodic volume V with a fixed energy E. In the various copies

the pressure and temperature fluctuate, with their instantaneous values defined through the

virial theorem and the ideal-gas thermometer13,21. Gibbs’ formalism describes the “state”

of a manybody material as an average over the ensemble of all applicable microstates. The

usual optimistic alternative to the generating of such a many-copy ensemble is to follow the

“molecular dynamics” of a single “typical” specimen system. The 1950s began with Fermi,

Pasta, and Ulam pursuing this idea at the Los Alamos Laboratory18.

Their chosen system was an anharmonic chain started with a low-frequency longitudi-

nal sinewave displacement. Their motivating desire was to see how long it took for this

“typical” anharmonic system to forget its atypical initial condition, and to produce Gibbs’

microcanonical equilibrium average properties. They were quite surprised to discover that

anharmonicity was not enough to promote equilibrium. Their choice of problem was there-

fore a good one. It has led to thousands of follow-on studies in the following seventy years.

Their computational approach to the dynamics was likewise good. Let us apply it to our

harmonic-oscillator example.

Fermi, Pasta, and Ulam used the second-order “Leapfrog Algorithm” to predict the next

step in time from the two preceding ones :

{ q(t± dt) ≡ q(t)± v(t± 1
2
dt)dt ; v(t± 1

2
dt) ≡ v(t∓ 1

2
dt)± a(t)dt } −→

q(t+ dt) = 2q(t)− q(t− dt) + (dt2)a(t) [ Leapfrog Algorithm ] .

The coordinate, velocity, and acceleration are respectively (q, v, a). Though the velocity

appears in the underlying “leapfrog derivation” the coordinates can be calculated as centered

second differences without any need to calculate or store the half-step velocities.

For the harmonic oscillator the acceleration is −q(t) and the analytic solution of the

finite-difference algorithm is periodic in time, but with a slightly higher oscillation frequency

deviating quadratically from the exact oscillator trajectory, q = cos(t):

q(t) = cos(ωt) ; ωdt = cos−1[1− (dt2/2)] [ Leapfrog Algorithm Solution ] .

9



By a simple “rescaling of the time”, a concept to which we return in Section V, this ap-

proximate algorithm can be made exact for the oscillator. Fermi, Pasta, and Ulam used

the leapfrog algorithm to study the dynamical properties of anharmonic chains. They were

mightily surprised that the chains showed no simple approach to equilibrium.

Soon after, Berni Alder and Tom Wainwright, helped by Mary Ann Mansigh (now

Karlsen)22, at the Livermore Laboratory in California, began to study the “event-driven”

molecular dynamics of hard disks and spheres2. They computed the times to each pair of

particles’ next collision accurately. The resulting geometry, coupled with conservation of

momentum and energy, gives the post-collision velocities of the two colliding particles. The

simulation then continues to the next collision.

Unlike Fermi’s nonlinear chains, hard-particle systems soon came to thermal equilib-

rium, nicely reproducing the Maxwell-Boltzmann velocity distribution f(v) ∝ e−mv2/2kT .

The most surprising finding of the Livermore work was that (two-dimensional) hard disks

underwent a fluid-solid phase transformation at a density near three-fourths of the closest-

packed “triangular-lattice” structure. The details of the transition have been progressively

refined, as recently as 2013, and are now quite well known23. Paradoxically the transition

in three dimensions, with hard spheres freezing at two-thirds the close-packed density, had

already been characterized fairly well, by both molecular dynamics and Monte Carlo, in

the 1950s19,20. The three-dimensional transition is both broader and sharper than is its

two-dimensional little brother.
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FIG. 2: To the left we show the definition of (α, β) which define the location and exit velocity of

each Galton-Board collision. To the right we see the fractal attractor distributions that result with

gravitational field strengths of E = 1, 2, 3, and 4. This work is fully described in Reference 24.

IV. ISOKINETIC NONEQUILIBRIUM DYNAMICS FROM THE 1970S

Molecular dynamics, when equipped with boundary conditions allowing heat transfer, can

describe dissipative stationary states requiring work for their maintenance and discharging

an equivalent time-averaged amount of heat to their environment. Nonequilibrium molecular

dynamics simulations with boundary velocities and temperatures were first performed in the

1970s,13,21 by controlling particle velocities with “thermostat forces”. Implementing this idea

required a definition of “temperature”, for which the ideal-gas definition, mkT ≡ 〈 p2 〉 was
readily adopted. Gibbs’ statistical mechanics had backed this definition with the observation

that at equilibrium, so long as the potential energy Φ(q) was independent of the kinetic,

K =
∑

mv2/2 = NDkT/2. HereD is the dimensionality andND is the number of Cartesian

degrees of freedom in the sum. Gibbs’ statistical mechanics shows that exactly the same

velocity distribution applies to dense matter as to the ideal gas. These same thermostat

forces can also be generalized to simulating the mix of energy states required for Gibbs’

canonical weighting of energies, e−E/kT .

The Department of Applied Science of the University of California at Davis was founded

in 1963 in response to Edward Teller’s wish for a wider disemination of the research oppor-

tunities at the Lawrence Radiation Laboratory. By 1970 Berni Alder had helped Bill Hoover

11



to a Professorship there. Bill soon found a willing student, Bill Ashurst, from the Sandia

Laboratory across the street [ East Avenue ], to work with him on nonequilibrium simulation

techniques. Ashurst’s PhD project, Dense Fluid Shear Viscosity and Thermal Conductivity

via Nonequilibrium Molecular Dynamics, was carried out between January 1972 and May

1974. Ashurst developed computational “fluid walls”, chambers containing a fixed number

of particles, with reflecting boundaries. At the end of each Leapfrog timestep the first and

second velocity moments in the fluid walls were adjusted to conform to the specified mean

velocity and temperature: {v → v + α + βv}.
Bill’s demonstration problems included dozens of simulations of viscous flows for dense

fluids confined between two oppositely-moving fluid walls. Offsetting the work done and the

heat transferred by the elastic wall collisions and the continuous momentum flow between

wall and system particles, Ashurst maintained nonequilibrium steady states by alternating

leapfrog steps with fluid-wall velocity adjustments on the order of a percent, maintaining

the boundary velocities and temperatures. In this two-step process work was performed,

and heat extracted, in such a way as to obey a time-averaged version of the Second Law.

Perhaps the simplest example problem constrains a manybody system to a fixed kinetic

temperature. To do this, using a frictional force, −ζp, the constraint of fixed kinetic energy

has the form :

{ ṗ = F − ζp } ;
N
∑

1

p · ṗ = 0 =
N
∑

1

[ F − ζp ] · p→ ζ =
N
∑

1

F · p/
N
∑

1

p · p .

The thermostat forces { −ζp } exactly offset the natural fluctuations in the kinetic energy,

forcing it to remain constant, providing isothermal ( and isokinetic ) fluid walls.

It is interesting to see that the friction coefficient ζ , being proportional to the momenta,

is time-reversible so that a reversed trajectory, with all of the { p } together with the two

wall values of { ζ } changing signs, satisfies exactly the same motion equations as did the

forward trajectory. This time-symmetry is paradoxical ( Loschmidt’s Paradox ) because any

irreversible process, viewed backward in time, makes no sense.

The physical explanation of the paradox was clarified in 198724,25. Bill, Harald Posch,

Brad Holian, and another PhD student of Bill’s, Bill Moran, discovered that time-reversible

thermostat forces obeying the Second Law of Thermodynamics provide a dynamics which

collapses onto a fractal ( fractional dimensional ! ) attractor. These attractors are made up

of a negligible fraction of all the Gibbs’ states present at equilibrium, but are still Lyapunov
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unstable, with tiny changes in the conditions leading to exponentially growing differences in

the future. The reversed trajectory, likewise containing its own negligible portion of phase

space ( the “repellor”, with reversed velocities ) is much less stable than the attractor.

The reversed trajectory is invariably less stable than the attractor and cannot be generated

directly from the dynamical equations. The only way to obtain the reversed trajectory is

previously to compute, store, and reverse a forward trajectory.

One of the 1987 Toy Models24, the “Galton Board”, demonstrated this explanation of

the Second Law in terms of isokinetic dynamics. A particle falling through a regular lattice

of fixed scatterers, in the presence of a gravitational field, was constrained to move at

constant speed by imposing an isokinetic constraint on its motion. See Figure 2. The

locations of successive collisions with scatterers could be described by two angles. The angle

α gives the location of the collision relative to the scatterer and the angle β describes the

outgoing velocity direction after that collision. For hard-disk scatterers the equilibrium

distribution of the angles is perfectly uniform in a simple rectangle, with 0 < α < π and

−1 < sin(β) < +1. The Figure shows the definitions of the two angles to the left and

the distributions of collisions that follow from four gravitational field strengths. The fractal

attractor dimension occupied by the collisional states decreases with increasing field strength.

Careful investigation shows that the dimension is always fractional so that the fraction of

states in the steady state is negligible, just as the measures of a line in two-dimensional

space or a surface in three dimensions have zero measure.

Ashurst’s heat-flow simulations were carried out by maintaining two fluid walls at dif-

ferent isokinetic temperatures. The resulting heat conductivities agreed fairly well with

experimental data for liquid argon and were used in simulating stationary shockwaves. At

Los Alamos this was accomplished by shrinking the volume as a function of time. At Liv-

ermore steady input and output flows far from the wave’s center were used to generate

stationary shockwaves26.
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V. THE INFLUENCE OF NOSÉ’S 1984 TIME-SCALING DYNAMICS

Realistic computer simulations of dense fluid flows, even shockwaves26, caused the con-

tinuing explosion of interest and participation in molecular dynamics we enjoy today. With

the background of the isokinetic and isoenergetic nonequilibrium simulations of the 1970s

many gifted researchers turned their attention to improving the state of the art. Among

them Shuichi Nosé was particularly innovative. By an imaginative extension of Hamilto-

nian mechanics he invented a method for mixing energy states dynamically in such a way

as to reproduce Gibbs’ canonical ensemble. This linking of computer simulations to well-

established fundamental physics helped popularize simulations and led to the recognition of

Berni Alder’s pioneering influence with his award of the National Medal of Science in 2009.

Berni’s award was followed four years later with the Nobel Prizes in Chemistry for Martin

Karplus, Michael Levitt, and Arieh Warshel. They developed realistic biological simulations

using thermostated molecular dynamics with judicious quantum-mechanical additions.

The isothermal mechanics invented by Shuichi Nosé in 1983-19843,4 was a catalyst for

this development. His seminal work was greatly extended in 1984-19965–7,9. We introduce

and discuss it here from a pedagogical point of view. Replicating Gibbs’ canonical ensemble

with a deterministic Hamiltonian dynamics was Nosé’s goal. Two problems needed to be

solved to accomplish it : [ 1 ] the new mechanics needed to access the energy states given by

Gibbs’ canonical probability density, f(q, p) ∝ e−E/kT ; [ 2 ] the new mechanics’ phase-space

trajectory needed to speed up at higher energies and slow down at lower ones in just such

a way as to convert the constant density microcanonical distribution to the exponential

density canonical one. Nosé adopted Hamiltonian mechanics as his starting point. With the

imaginative addition of “time scaling” he could vary the speed of phase-space travel (and

more fundamentally the strain-rate of the corresponding compressible flow) to replicate

Gibbs’ distribution.

Nosé’s highly original approach involves first the scaling of all the Hamiltonian momenta

by a multiplicative time-scaling factor (1/s) ≡ e+E/kTe+ζ2τ2/2, where ζ = ps is a friction

coefficient as well as the Hamiltonian momentum conjugate to s, and where τ governs

the strength of the thermostating forces {−ζτ 2p}. Next, and finally, Nosé’s fundamental

invention, the time-scaling factor s, must adjust the frequency of appearance of phase-space

states in direct proportion to e−E/kT ∝ f(q, p), Gibbs’ phase-space probability density.
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Shortly after meeting with Nosé to discuss his work Hoover showed that frictional forces,

{ −ζp }, where ζ is determined by time-reversible feedback, ζ̇ ∝ ∑

(p2−mkT ), reproduce the

results of Nosé’s isothermal mechanics directly from the phase-space continuity equation5.

At Philippe Choquard’s Lausanne laboratory Hoover applied Nosé’s ideas to numerical

simulations of a thermostated one-dimensional harmonic oscillator. This numerical work

showed that the Nosé oscillator was far from ergodic. Instead, it generated a remarkable

variety of toroidal solutions as well as a relatively-small chaotic sea6. The union of all these

separate solutions was the three-dimensional Gaussian :

f(q, p, ζ) = e−H/kT e−ζ2τ2/2 ≡ e−[ q2+p2 ]/2e−ζ2/2 [ Nosé− Hoover ] .

A generation later Clint Sprott and the Hoovers showed that the oscillator model had toroidal

orbits that formed interlocking rings27. More recently Lei Wang and Xiao-Song Yang found

Nosé-Hoover oscillator trajectories in the form of knots, very far from the simple ellipses of

the isoenergetic model28. Here and in what follows, we forgo those fascinating topological

surprises, mercilessly simplifying Nosé’s approach and its many possible generalizations, as

formalized by Bauer, Bulgac, and Kusnezov14. Instead we choose to focus on the canonical

oscillator problem with linear friction and with all of the various parameters in the model,

including kT , equal to unity.

A. Generalizations of Nosé-Hoover Mechanics, 1990-1992

The oscillator-based discovery that Nosé’s mechanics wasn’t necessarily ergodic opened

up a new research area which is still quite active—finding motion equations which generate

the entire canonical phase space distribution regardless of initial conditions. The most useful

work along those lines, with many worked-out example problems, was pioneered by Bauer,

Bulgac, and Kusnezov in two long and comprehensive readable papers in the Annals of

Physics14. Their work generalized Hoover’s13, showing that several thermostat variables,

called “Demons” in Reference 14, can be used simultaneously, with three Demons enough to

simulate one-particle Brownian motion ! Generally they found that additional nonlinearity

enhances ergodicity. Figure 3 compares Poincaré sections at the plane p = 0 for three

varieties of thermostated oscillator including the far from ergodic Nosé-Hoover example :

{ q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − 1 } → f = e−q2/2−p2/2−ζ2/2 [ Nosé− Hoover ] ;
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FIG. 3: (q,p) cross sections for the Nosé-Hoover problem (center) with frictional force −ζp, as

well as two stiffer variations, −p3ζ (left), and −pζ3 (right) suggested by the work of Hoover13 and

Bauer, Bulgac, and Kusnezov14.

{ q̇ = p ; ṗ = −q − ζ3p ; ζ̇ = p2 − 1 } → f = e−q2/2−p2/2−ζ4/4 [ Cubic ζ ] ;

{ q̇ = p ; ṗ = −q − ζp3 ; ζ̇ = p4 − 3p2 } → f = e−q2/2−p2/2−ζ2/2 [ Cubic p ] .

Before long, in 1996, Hoover and Holian found29 that the simplest combination of two

moment-based Demons was enough to render the one-dimensional harmonic oscillator er-

godic :

{ q̇ = p ; ṗ = −q − ζp− ξp3 ; ζ̇ = p2 − 1 ; ξ̇ = p4 − 3p2 } [ Hoover− Holian Ergodic ] .

This set of equations provides an entire four-dimensional Gaussian distribution for any initial

condition29 :

f = e−q2/2−p2/2−ζ2/2−ξ2/2 [ Hoover− Holian ] .

In all of these cases the stationary distribution follows from the phase-space continuity

equation, which is a generalization of the ideas used to derive Liouville’s Theorem :

(∂f/∂t) = 0 = −f [(∂q̇/∂q) + (∂ṗ/∂p) + (∂ζ̇/∂ζ)]− q̇(∂f/∂q)− ṗ(∂f/∂p)− ζ̇(∂f/∂ζ) .

Although only the last of these approaches is ergodic recent developments have shown

that a single thermostat variable can provide ergodicity. A particularly interesting singular

example was highlighted by Sprott16 as an extension of the prize-winning work of Tapias,

Bravetti, and Sanders, who used a hyperbolic tangent function of ζ to shift from heating

(negative ζ) to cooling (with positive ζ)15 :

{ q̇ = p ; ṗ = −q ∓ αp ; ζ̇ = p2 − 1 } [ Sprott′s Signum Thermostat ] .
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FIG. 4: The cross-section ζ = 0 for the Signum Thermostat16 with ṗ = −q∓ 1.618034p for which

the stationary solution is f(q, p) ∝ e−[ q2/2+p2/2+1.618304| ζ | ]. The “nullclines” at p = ±1 show

no penetration as the motion there is tangent to the Poincaré plane. For simplicity despite the

discontinuities in ṗ we used 400,000,000 fourth-order Runge-Kutta timesteps with dt = 0.0025 to

approximate the distribution of (q, p) points in the plane.

Here the minus sign is used for positive ζ and the plus sign for negative ζ . The momentum

p varies continuously in time, but with an occasional discontinuity in its first derivative.

Sprott observed ergodicity for this model provided that the parameter α is chosen at least

equal to the “Golden Ratio”, 1.618034 =
√

(5/4) + (1/2). The details of this work are not

yet understood. Figure 4 illustrates the uniform coverage of the Poincaré section ζ = 0

obtained with Sprott’s Thermostat.

B. Dettmann’s 1996 Contribution to an Understanding of Nosé’s Approach

Bill and Carl Dettmann discussed the difficulty of rationalizing Nosé’s time-scaling step

at a CECAM meeting one July evening in Lyon7,9. By the next morning Dettmann had

discovered that the simple step of multiplying Nosé’s Hamiltonian HN by s, the mysterious

time-scaling variable, provided a new Hamiltonian HD, completely avoiding time scaling

provided that this new Hamiltonian was chosen to have the value zero ! Dettmann’s Hamil-
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FIG. 5: Probability density prob(s) for s =
√
e−r2 where the radii { r } are selected from a

three-dimensional Gaussian distribution. One million data were sorted into one thousand bins and

are here compared with the analytic distribution derived in the text.

tonian for the one-dimensional oscillator,

HD ≡ sHN = s[ q2 + (p/s)2 + ζ2 + ln(s2) ]/2 ≡ 0 ,

reproduces the Nosé-Hoover motion equations for the oscillator [ provided that the scaled

momentum (p/s) is replaced by the symbol p ]. As a fringe benefit, this step provides the

identification of the mysterious s with the extended Gibbs’ distribution f(q, p, ζ) ! :

s ≡ f(q, p, ζ) = e−[ q2+p2+ζ2 ]/2 [ Nosé− Hoover = Dettmann ] .

Gibbs’ three-dimensional Gaussian distribution can be converted into a probability density

for the time-scaling variable s as follows:

s2 = e−(q2+(p/s)2+ζ2) ≡ e−r2 → sds = −re−r2dr → (dr/ds) = −(1/rs)→

prob(s) = (2π)−3/24πr2e−r2/2(dr/ds) =
√

(2/π) ln(1/s2) [ Ergodic ].

To confirm this analysis we choose one million values of r2 with the relative probability of

r2e1−r2 and bin their logarithms in Figure 5.

In considering these extensions of Nosé’s 1984 work we need to analyze a relatively simple

model in order to understand the relatively complex relationship between the speed of phase-

space travel and probability density. The harmonic oscillator is too simple for this as the
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phase-space speed in entirely uniform. The continuity equation for f(q, p, ζ) shows directly

that rather than speed it is strain rate, (⊗̇/⊗) ≡ (−ḟ /f) that is crucial to the equivalence

between time scaling and probability density. To clarify this point we consider the Quartic

oscillator, with HQ = (q4/4) + (p2/2).

C. The Phase-Space Strain Rate of the Quartic Oscillator

The equilibrium one-dimensional quartic oscillator, { q̇ = p ; ṗ = −q3 }, obeys Liouville’s
Theorem,

(ḟ /f) = −(⊗̇/⊗) = −(∂q̇/∂q)− (∂ṗ/∂p) = −0− 0 = 0 .

One might expect then that all the accessible oscillator states are equally likely, traversed

at equal speeds. But they are not. The speed, with initial conditions (q, p) = (0, 1) varies

between 1 and 23/4 = 1.6818. The oscillator conserves its energy so that its trajectory is

just a one-dimensional line in (q, p) space, with a varying speed. To the left in Figure 6

we see the oscillator (q, p) trajectory and the time-dependence of the speed in phase space,
√
p2 + q6. To the right we see the strain rate of the one-dimensional trajectory with initial

condition (q, p) = (0, 1). This is calculated two ways: [ 1 ] the strain-rate parallel to the

trajectory, (r ·v)/(r ·r) ; [ 2 ] the largest local Lyapunov exponent, calculated by considering

the constraint required to maintain the length of an infinitesimal vector (δq, δp) tied to the

(q, p) trajectory :

{ q̇ = p ; ṗ = −q3 } → { δ̇q = δp − λδq ; δ̇p = −3q2δq − λδp } −→

λ = δqδp(1− 3q2) .

Because the motion is regular and periodic there can be no exponential growth of small

perturbations. But the local values of the Lyapunov exponent vary in the range [ −1 to +1 ].

This example shows forcefully that Liouville’s Theorem is misleading when applied to a

single-system trajectory. In the one-dimensional case, with only two phase-space directions,

the longitudinal and transverse strains exactly cancel, Liouville’s Theorem. The transverse

strain rate, eliminated by energy conservation is equal to the second Lyapunov exponent.

The first, plotted to the right in Figure 6, gives the local logarithmic rate of longitudinal
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FIG. 6: To the left we show the variation of (q, p,
√

(p2 + q6)) for one quartic oscillator period. At

the right we show the variation of the one-dimensional strain rate along the (q, p) quartic oscillator

trajectory with initial conditions (q, p, δq , δp) = (0, 1, 1, 0). The two methods mentioned in the text

agree. Note that the strain rate variation occurs twice during the oscillator period of approximately

6.236.

expansion of an infinitesimal element of length as a function of time. As the motion is peri-

odic the mean value of both exponents is zero. The analogous details for a one-dimensional

harmonic oscillator’s elliptical phase-space orbit have been published in Reference 30.
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VI. AN APPARENT NOSÉ-HOOVER-DETTMANN PARADOX

In all there are three separate routes to exactly the same outcome, the Nosé-Hoover

oscillator motion equations and their stationary probability density :

f(q, p, ζ) = s(q, p, ζ) = e−(q2+p2+ζ2)/2 :

[ 1 ] Nosé’s Hamiltonian3,4, followed by time-scaling ( multiplying all rates by s ).

[ 2 ] Hoover’s continuity-equation derivation5,6 : (−ḟ /f) = (∂q̇/∂q) + (∂ṗ/∂p) + (∂ζ̇/∂ζ) .

[ 3 ] Dettmann’s Hamiltonian7,9, set equal to zero and equivalent to setting Nosé’s to zero.

Hoover’s derivation has the simplest assumptions, depending only on the continuity of the

variables (q, p, ζ, f), separability, and linearity. That is, assume that f(q, p, ζ) is separable,

and of course positive, and that ζ has the simplest possible (linear) effect on the trajectory.

The consequence is a differential equation for the functional dependence of the linear friction

coefficient ζ on the oscillator variable p :

{ q̇ = p ; ṗ = −q − ζp } ; f = e−(q2+p2)/2eg(ζ) ;

(∂ ln f/∂t) = 0 = q̇q + ṗp− ζ̇(dg/dζ)− (∂ṗ/∂p) = −ζp2 − ζ̇(dg/dζ) + ζ −→

{ g = −(ζ2/2) ; ζ̇ = p2 − 1 } .

Alternatively, if the frictional force is cubic, ṗ = −q − ζp3, we again find the Gaussian

solution :

0 = −ζp4 − (p4 − 3p2)(−ζ) + 3ζp2 ←→ { g = −(ζ2/2) ; ζ̇ = p4 − 3p2 } .

This alternative suggests that other odd powers of p or other even integrable functions of ζ

could be used in its probability density, as is indeed the case14–16.

Let us next consider the difference between two descriptions of a thermostated oscillator—

the one a one-dimensional trajectory in a three or four-dimensional phase space; the other a

three- or four-dimensional flow of an ensemble of systems living in the same phase space. We

will focus on the surprising qualitative differences among the three- and four-dimensional

flows described by Nosé, Dettmann, and Nosé-Hoover dynamics. All of them, even three-

dimensional Nosé-Hoover, can be analyzed in a four-dimensional (q, p, s, ζ) phase space, or
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in a three-dimensional subspace corresponding to the single-trajectory restriction of con-

stant energy. To promote the Nosé-Hoover flow to four dimensions it is only necessary to

define ṡ ≡ sζ . Liouville’s Theorem then can apply to all three sets of equations. The

Theorem establishes that the four-dimensional Hamiltonian probability density flows like an

incompressible fluid, with ḟ ≡ 0, just as in the familiar two-dimensional case :

{ q̇ = (∂H/∂p) ; ṗ = −(∂H/∂q) } −→ ḟ = (∂f/∂t) +
∑

q̇(∂f/∂q) + ṗ(∂f/∂p) ≡ 0 .

The Nosé (s0) and Dettmann (s1) oscillator Hamiltonians differ by just a factor s :

HN,D = (s0,1/2)[ q2 + (p/s)2 + ln(s2) + ζ2 ] ≡ 0 ; ζ ≡ ps .

In both cases the resulting constant-energy dynamics develop in a three-dimensional con-

strained phase space. For instance we can choose a space described by the coordinate q,

scaled momentum (p/s), and friction coefficient ζ . With the energy fixed any one of the four

variables (q, p, s, ζ) can be determined from a convenient form of the constraint conditions :

s = e−(1/2)[ q2+(p/s)2+ζ2 ] [ Dettmann and Nosé ] .

It is convenient to specify (q, p/s, ζ) and then to select s to satisfy the H ≡ 0 constraints.

A consequence of the Dettmann multiplier s1 is the simple relationship linking solutions of

the Nosé and Dettmann Hamiltonians :

(q̇, d
dt
(p/s), ζ̇)Dettmann ≡ s(q̇, d

dt
(p/s), ζ̇)Nosé .

The Nosé and Dettmann trajectories are identical in shape but are traveled at different

speeds. Let us illustrate the interesting differences among the three equivalent descriptions

for the case of the simplest periodic orbit. The initial conditions are (0, 0.46627, 0.30082, 0)

so that initially the scaled momentum is (p/s) = 1.55 and the Hamiltonian vanishes, with

s = e−1.552/2 = 0.30082.

A. An expanding model in four dimensions

Nosé’s Hamiltonian, HN = (1/2)[ q2+(p/s)2+ln(s2)+ ζ2 ], followed by the time-scaling,

(q̇, ṗ, ṡ, ζ̇)→ (sq̇, sṗ, sṡ, sζ̇), leads to four equations of motion in (q, p, s, ζ) space:

{ q̇ = (p/s) ; ṗ = −sq ; ṡ = sζ ; ζ̇ = [ (p/s)2 − 1 ] } → (∂ṡ/∂s) = +ζ [ Dettmann ].
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FIG. 7: The time variation of three expressions for the probability density f as measured once

around a periodic orbit generated with Dettmann’s (or Nosé’s, with time scaling) Hamiltonian

in the four-dimensional (q, p, s, ζ) phase space. The initial conditions are (0, 0.46627, 0.30082,

0) so that initially the scaled momentum is (p/s) = 1.55 and the Hamiltonian vanishes. The

thickest line is Gibbs’ canonical-ensemble density chosen so that the initial value is s = e−1.552/2 =

e−[ q2+(p/s)2+ζ2 ]/2. The medium white line overlaying the thicker red one shows the progress of

the “time-scaling factor” s(t). The thinnest blue line is s(0)e
∫ t

0
ζ(t′)dt′ . The perfect agreement of

the three demonstrates that the phase-space density f(q, p, ζ) can be obtained by measuring the

phase-space compression ( but not the speed ) along the four-dimensional Hamiltonian trajectory

with Dettmann’s constraint, HD ≡ 0 . But the early-time association of increasing phase volume,

expected from (∂ṡ/∂s) = ζ > 0, is indeed paradoxical.

Exactly these same motion equations follow more simply from Dettmann’s Hamiltonian,

with no need of time scaling. Because our initial condition has a higher “temperature”,

(p/s)2 = 2.4025, than the target of unity the short-time friction coefficient ζ becomes pos-

itive. This suggests, from ṡ = sζ , that Nosé’s (or Dettmann’s ) oscillator’s phase volume

begins by expanding rather than contracting. This expansion with a positive friction seems

counter to Liouville’s Theorem, and suggests a paradox. Figure 7 shows the details of this

four-dimensional problem. The time scaling factor s is precisely equal to Gibbs’ canonical

probability density. With the short-time positive friction, ζ > 0, the flow does contract

rather than expand, despite the ṡ equation. Let us investigate this intriguing problem fur-

ther.
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B. An incompressible model ?

Dettmann’s Hamiltonian, HD = (s/2)[ q2 + (p/s)2 + ln(s2) + ζ2 ], with the constraint

HD ≡ 0 imposed in the initial conditions, is not really incompressible :

{ q̇ = p/s ; ṗ = −sq ; ṡ = sζ ; ζ̇ = −(1/2)[ q2 − (p/s)2 + ln(s2) + ζ2 ]− 1 } →

(∂ṡ/∂s) + (∂ζ̇/∂ζ) = +ζ − ζ = 0 [ Incompressible? ] .

The flow equations certainly maintain a comoving four-dimensional hypervolume un-

changed in size. This is nothing more than the usual application of Liouville’s Theorem and

is no surprise. But taking the zero energy constraint into account reduces the flow to three

phase-space dimensions, just as in the Nosé-Hoover picture. Let us look at that picture

next. The quantitative details of the evolving phase probability are shown in Figure 7.

C. A contracting model in three dimensions

Here either Nosé-Hoover dynamics or a three-dimensional version of Dettmann’s Hamilto-

nian, including the constant-energy constraint, gives the same results. A time-reversible fric-

tional force, −ζp, provides a steady-state Gaussian phase-space distribution e−[ q2+p2+ζ2 ]/2.

In the two versions of dynamics the friction coefficient ζ is determined by the feedback

integral of temperature fluctuations around the target of unity :

{ q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − 1 } −→ (∂ṗ/∂p) = −ζ [ Nosé− Hoover ] .

Dettmann’s motion equations are identical to these if his scaled momentum (p/s) is

replaced by the symbol p:

{ q̇ = (p/s) ; ṗ = −qs ; ṡ = sζ } (p/s)→p−→ { q̇ = p ; ṗ = −q − ζp ; ṡ = sζ } .

Here, with the relatively “hot” initial condition, the three-dimensional phase-space volume

shrinks (correctly) initially due to contraction parallel to the momentum axis. So, for the

three phase-space descriptions of the same physical problem we have found expansion, in-

compressibility, and compression, all for exactly the same phase-space states. We put these

three examples forward from the standpoint of pedagogy, as a useful and memorable intro-

duction to the significance of Liouville’s Theorem for isoenergetic flows. The constraint of

constant energy can lead to qualitative differences in the evolution of f and ⊗.
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FIG. 8: Variation of the timestep dt required to bound the rms error,
√

dq2 + dp2 + ds2 + dζ2

between 10−12 and 10−10. With any error outside that range the timestep was adjusted by a

factor of two and the trial step was repeated. The initial conditions are taken in the chaotic sea,

(q, p, s, ζ) = (2.4, 0, e−2.88, 0) and chosen so that the Nosé and Dettmann Hamiltonians vanish. The

data shown correspond to about 250,000 successful timesteps.

VII. SOLVING DIFFERENTIAL EQUATIONS-QUANTIFYING ERGODICITY

Mechanical simulations require solving differential equations and analyzing the results.

Solutions are necessarily numerical, almost always in the form of time series, and often

produced by packaged software. Creating one’s own software is both a pleasure and an

insurance policy, guarding against inflexible programming which is hard to understand or

improve. Once the underlying model has been reduced to differential equations and once

these have been “solved”, represented by a time series of salient variables ( coordinates,

momenta, energies, ... ), analysis takes over. Once again it is simplest to maintain a

personal working library of transparent software for creating, displaying, and analyzing data

files. In our own work there is a recurring need for the analysis of dynamical instability,

“Lyapunov instability”, which causes small errors to grow, exponentially fast, as eλ(t). Let

us consider numerical simulation work in more detail, beginning with solving the equations

and continuing with the analysis of the resulting data.

A. Integration of Ordinary Differential Equations

Although there is an extensive literature describing “symplectic” finite-difference schemes

for solving the molecular dynamics problems, much of it available on the arXiv, there is no
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real need for these schemes in the research work we enjoy17. In our experience fourth-order

Runge-Kutta integrators, where the programming is both simple and transparent, are best.

Because integration errors vary as dt4 over a fixed ( sufficiently short ) time interval, these

can readily be estimated by comparing the result of a single timestep dt, to the result of two

timesteps of half the length (dt/2).

Let us define the integration “error” for a dt step as the rms difference between the coarser

dt solution and the finer solution with two successive steps of dt/2. To illustrate we consider

Nosé’s original Hamiltonian approach applied to the harmonic oscillator :

{ q̇ = p/s2 ; ṗ = −q ; ṡ = ζ ; ζ̇ = (p2/s3)− (1/s) } [ Nosé ] .

The rms error here is
√
dq2 + dp2 + ds2 + dζ2.

With double precision arithmetic it is convenient to choose dt such that the error for the

oscillator lies between the values of 10−12 and 10−10. Whenever the error is too large, greater

than 10−10, we cut the timestep in half ; whenever the error is too small, less than 10−12,

we double dt. Such an automated strategy is easily implemented and works quite well with

“stiff” differential equations like Nosé’s or Sprott’s Signum oscillator16,17.

In Figure 8 we show the range of timesteps that results from these motion equations.

The integration error was constrained to lie between 10−10 and 10−12 for this demonstration.

One million successful steps were taken. The minimum step 2−28 lay below the average, 2−9,

by about 19 powers of 2. We show one quarter million steps in the figure.

B. Achieving Ergodicity with the 0532 Model

Gibbs’ ensembles include all phase-space states consistent with the independent thermo-

dynamic variables, like energy, pressure, volume, and temperature. Particularly in small

systems with just a few phase-space dimensions dynamical ergodicity, as in the case of the

Signum thermostat of Figure 4, is desirable. In 2015 it occurred to us that “weak control”

could constitute a viable path to ergodicity. This led us to the “0532 Model”, a smooth and

ergodic representation of Gibbs’ canonical distribution for the harmonic oscillator31:

{ q̇ = p ; ṗ = −q − 0.05ζp− 0.32ζ(p3/T ) ;

ζ̇ = 0.05[ (p2/T )− 1 ] + 0.32[ (p4/T 2)− 3(p2/T ) ] } [ 0532 Model ] .
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Notice that the model includes a linear combination of second-moment and fourth-moment

controls rather than one or the other of these possibilities. There are many other combina-

tions which lead to ergodic dynamics. For more details see Reference 31. The nullclines for

the equilibrium model, where T = 1, are near p = ±1.7 where ṗ vanishes. Otherwise the

p(q) section for the 0532 model looks much like Signum case of Figure 4. Time and mirror

symmetry for the model imply fourfold symmetry in the Sections just as in the examples

of Figures 3 and 4. Both of these symmetries disappear in the nonequilibrium case that

the temperature becomes a function of coordinate, the dynamics becomes dissipative, and

the phase-space distribution becomes fractal, all of which we illustrate next. The mirror

symmetry is destroyed by the temperature gradient while the time symmetry is destroyed

by irreversibility, which allows for the dissipative solutions that satisfy the Second Law of

Thermodynamics, but steadfastly prevents their reversal. See Figure 9 and note that both

symmetries, ±q and ±p have disappeared.
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FIG. 9: Three cross-sections of the 0532 model strange attractor with maximum temperature

gradient of 0.5. Each of the variables is shown in the range −5 < { q, p, ζ } < +5 . The two nonzero

Lyapunov exponents for this system are +0.1135 and -0.1445, producing a “strange attractor”. The

Kaplan-Yorke dimension of this fractal is 2 + (0.1135/0.1445) = 2.785, a zero-volume object in the

three-dimensional (q, p, ζ) space.

VIII. NONEQUILIBRIUM DIFFERENTIAL EQUATIONS AND MAPS

Letting the temperature vary smoothly in the cold-to-hot range from 0.5 to 1.5 pro-

vides a simple instructive three-dimensional nonequilibrium flow problem with a maximum

temperature gradient of 0.5 :

0.5 < T (q) ≡ 1 + 0.5 tanh(q) < 1.5→ (dT/dq)q=0 = 0.5 .

Although the mass current 〈 p 〉 necessarily vanishes, the heat current Q = 〈 p(p2/2) 〉 does
not. Heat flows primarily from hot to cold and is responsible for the dissipation which causes

the collapse of phase volume ,

ṗ = −0.05ζp− 0.32ζ(p3/T ) [ 0532 Model ] −→

−(Ṡ/k) = 〈 (⊗̇/⊗) = (∂ṗ/∂p) 〉 = 〈 −0.05ζ − 0.96ζ(p2/T ) = (Q/kT ) 〉 = −0.0310 .

This relatively simple example of a stationary nonequilibrium flow helps convey three

lessons, treated in what follows : [ 1 ] Lyapunov instability, the exponential growth of small

perturbations. This is the main mechanism for the mixing of states; we will describe how to

characterize it. [ 2 ] The formation of strange attractors, with at least one positive Lyapunov

exponent but with a negative overall sum, is the typical situation away from equilibrium.

The irreversible attractors provide the microscopic analog of the macroscopic Second Law of
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Thermodyamics. The simplest relevant example we know of is the time-reversible compress-

ible Baker-Map Model32–35. [ 3 ] The fractal dimension of strange attractors can be related

to Lyapunov instability through the balance of chaotic growth with dissipative decay. We

consider these three lessons in turn, beginning with a look at Lyapunov’s ideas from a bit

over 100 years ago.

A. Lyapunov Instability

Alexander Lyapunov (1857-1918) characterized the (exponential) instability of differential

equations in terms of the growth and decay exponents describing the deformation of a phase

space hypersphere. An N -dimensional problem with N ordinary differential equations is

characterized by N exponents. Their sum gives the change of phase volume,
∑

λ = (⊗̇/⊗),
zero at equilibrium and negative for nonequilibrium steady states, corresponding to the

formation of a strange attractor.

The simplest nonequilibrium flow problems are three-dimensional, the minimum for chaos.

They can be described by three exponents, { λ } with the first and largest easy to calculate,

the second equal to zero, and the third negative, large enough to provide the negative

sum, λ1 + λ3 < 0 consistent with the Second Law of Thermodynamics. The first and

largest exponent, λ1 = 〈 λ1(t) 〉, can be determined by measuring the growth rate of small

perturbations. In practice this is done by following two neighboring solutions (a “reference”

and its “satellite”) and evaluating their short-term tendency to separate. At the end of each

timestep the separation δ is compared to the target value δ0, (typically 10−5 or 10−6). The

rescaling operation necessary to return the separation to the target value defines the local

exponent λ1(t) :

(q, p, ζ)s = (q, p, ζ)r + (δ0/| δ |) δ ;

δ ≡ [ (q, p, ζ)s − (q, p, ζ)r ] ; λ1(t) ≡ − ln(| δ |/δ0)/dt .

The third (negative) exponent gives the overall negative sum, λ1 + 0 + λ3 < 0, required

for convergence of the phase-space distribution. A straightforward method for finding λ3

when the equations are time-reversible, is to store and reverse a forward trajectory36. When

analyzed backward (again keeping a satellite trajectory close to the reversed reference) the

largest Lyapunov exponent is−λ3 and the negative exponent is−λ1. The reversed trajectory,

the “repellor”, acts as a source for the phase-space flow, from the repellor to the attractor.
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In order better to understand the strange attractors we describe and illustrate a two-

dimensional map. This map conveys the same lessons as a three-dimensional flow, or a

many-body dissipative simulation, but in the simplest setting possible. The two-dimensional

map can be pictured as relating two successive cross-sections of a three-dimensional flow.

B. The Nonequilibrium Time-Reversible Compressible Baker Map

The “Baker Map” name recalls the physical mixing implemented by kneading dough.

This pedagogical nonequilibrium map32–35 “N” allows for the variable compression of the

dough, leading to a “fractal” (fractional-dimensional) loaf and to irreversible dissipation

despite the perfect time-reversibility of the underlying linear equations. The N mapping34,35

at the left of Figure 10 is this :

For twofold expansion ( of the black region ), q < p−
√

2/9 :

q′ = (11q/6)− (7p/6) +
√

49/18 ; p′ = (11p/6)− (7q/6)−
√

25/18 .

For twofold contraction ( of the white region ), q > p−
√

2/9 :

q′ = (11q/12)− (7p/12)−
√

49/72 ; p′ = (11p/12)− (7q/12)−
√

1/72 .

The mapping, (q, p)→ (q′, p′), applies within a rotated 2× 2 square with extreme values of

q and p of ±
√
2. The “T” time-reversal mapping shown in Figure 10 changes the sign of

the “momentum” p, leaving the “coordinate” q unchanged. This diamond-shaped version

of the map has the twin advantages of [ 1 ] time reversibility and [ 2 ] square roots. These

roots circumvent the very short limit cycles which occur within the simpler-looking but less

useful “square” version of the same map, with 0 < x, y < +1 :

2/3 < x < 1 −→ x′ = 3x− 2 ; y′ = (1 + 2y)/3 ;

0 < x < 2/3 −→ x′ = 3x/2 ; y′ = y/3 .

Single- and double-precision iterations of the (x, y) map, starting at (0.5, 0.5) produce pe-

riodic orbits of lengths, 1571 and 146,321,810, too short for statistical analyses. A single-

precision FORTRAN program of the diamond-shaped “N” mapping using the gnu compiler

produced a periodic orbit of 1,124,069 discrete (q, p) points. A double-precision iteration of

this problem, starting with (q, p) = (0, 0), showed no periodicity during 1012 iterations. See
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FIG. 10: The nonequilibrium Baker Map “N” carries the southeast two-thirds at the left to the

southwest one-third at the right of the figure. The flow from the repellor, at the center of the

figure, to the attractor at the right can only be reversed by storing and reversing (“T”) a forward

trajectory. The repellor has zero probability, with two-thirds of that in the northwest third at the

left. The attractor has unit probability, with two-thirds of that in the southwest third at the right.

pages 16-23 of Lecture 9 and Section 3 from Lecture 10 of our Kharagpur Lectures vugraphs

for more details. All eleven Lectures can be found at williamhoover.info on the web.

C. Lyapunov Exponents for the Nonequilibrium Baker Map

At the top left of Figure 10 a small element of white area expands by (3/2) and contracts

by (1/3) while a black element expands by 3 and contracts by (2/3). The inexorable resulting

stretching in the northwest-southeast direction leads to (2/3) of the measure white and (1/3)

black. These considerations give for the longtime-averaged expansions and contractions :

λ1 = (2/3) ln(3/2) + (1/3) ln(3) = (1/3) ln(27/4) = +0.63651 ;

λ2 = (2/3) ln(1/3) + (1/3) ln(2/3) = (1/3) ln(2/27) = −0.86756 .

Thus a small one-dimensional line exposed to the mapping grows as e0.63651t with t iterations

of the map while a tiny two-dimensional area shrinks as e−0.23105t. Kaplan and Yorke32

provided a simple approximate estimate, thought to be exact in this case, relating fractal

structure to Lyapunov instability, the third nonequilibrium lesson we’ll relate to the Baker

Map and conducting oscillator models.
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D. Fractal Dimensionality

Dimensionality is simply related to scaling relationships. A three-dimensional cube dou-

bled in size contains eight times the mass. A square four times and a line two times. The

same idea can be applied to fractional noninteger ideas about dimensionality. If a steady-

state structure in phase space has growth and decay rates of +0.1135 and -0.1445 respectively

the area covered varies as e−0.0310t while the length varies as e0.1135t. Characterizing ergod-

icity in a three-dimensional problem can be addressed by sectioning the phase space in a

search for (nonergodic) “holes”. See again the (q, p) sections of Figure 3.

Despite the additional complexity of the rotated coordinate system the (q, p) version has

the physical advantage of time reversibility and the computational advantage of irrational

numbers in the mapping, which substantially delay the formation of periodic orbits.

The information dimension DI is the limiting small-mesh ratio 〈 ln(p) 〉/ ln(δ) where p is

the probability associated with an element of the mesh and δ is the mesh size. Evidently

a D-dimensional object of unit volume would have mesh element probabilities of δD and

the resulting average would agree with the ordinary notion of (integer) dimensionality. To

analyze the Baker Map the simplest approach is to store a reasonable number of (x, y) points,

2×1011 rotated (q, p) points, reduced to lie within the unit square. For illustrative purposes

we use two hundred billion successive (x, y) points. This takes a few hours’ effort on a

typical laptop computer. The information dimension was conjectured by Kaplan and Yorke

to agree with a linear interpolation to zero strain rate between the last positive Lyapunov

sum (starting with the largest value) and the first negative sum. For the Baker Map in two

dimensions this gives the estimate:

DI
?
= DKY ≡ 1− (λ1/λ2) = 1 + ln(27/4)/ ln(27/2) = 1.733680 .

Although the Kaplan-Yorke conjecture is plausible ( estimating the blend of expansion

and contraction which gives a vanishing strain rate ) and has been proved true32,33 for a wide

variety of maps, there are examples in which it definitely appears to fail37. The pedagogical

simplicity of the Map suggests it as a canonical analog of nonequilibrium simulations, fit

for numerical and theoretical exploration. A plausible statistical model follows from the

observation ( easily verified numerically ) that two-thirds of the Map iterations give com-

pression in the y direction and one-third give expansion. This Map is therefore equivalent

32



to a one-dimensional random walk with a variable step length. Choosing a random number

R for each iteration the stochastic model we use ( for 0 < y < 1 ) is :

R < 2/3→ y = y/3 ; R > 2/3→ y = (1 + 2y)/3 .

The information dimension for as many as a trillion iterations of the FORTRAN

Random Number routine can then be analyzed using a mesh length (1/3)n for n as large

as 19. A plot of some easily accessible results, DI as a function of −1/ ln(δ), provides a nice

straight line, as shown in Figure 11. An apparent fly in the Kaplan-Yorke ointment can be

seen by looking at the Kaplan-Yorke estimate as δ approaches zero. DKY ≃ 0.7337 while our

numerical estimate from data is 0.7415 ± 0.001. Thomas Gilbert pointed out to us that the

convergence of the information-dimension calculation can be nonuniform. In the fine-mesh

limit both the number of iterations and the number of bins must be large. He suggested

that a different mesh, δ = 2−n rather than δ = 3−n might give quite different results. We

found this to be true, making computational determinations of the information dimension

somewhat problematic for nonlinear problems.

Our numerical random-walk results for DI conform to theory, agreeing with the (q, p)

mapping “information dimensions” for feasible values of δ. Despite this agreement it is true

that the nonuniform convergence of the limiting process means that the extrapolation of

Figure 11 is incorrect!

DI ≡ 1 +
∑

i

pi ln(pi)/ ln(1/δ) [ one dimension ] .

Such determinations are much more economical than their two-dimensional twins :

DI ≡
∑

i

∑

j

pi,j ln(pi,j)/ ln(1/δ) [ two dimensions ] .

Our detailed investigation of this Baker Map dimensionality took us a few days and is still

under investigation. Evidently this project was well worthwhile. The results so far suggest

compressible Baker Map estimates from the statistical model agree with those using two-

dimensional meshes. It was a surprise to find that the limiting δ → 0 DI given correctly

by Kaplan-Yorke is prone to error when pursued by systematic extrapolation. Further

unpublished results with trillions of iterations and n = 19 are fully consistent with the

figure. We expect to report more details on this interesting feature of the compressible

Baker Map.
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FIG. 11: Variation of the apparent information dimension of the unit-square Baker Map with the

mesh size { 3−n }, with 4 < n < 17 and 2 × 1011 iterations of the (q, p) map analyzed in the unit

(x, y) square. The random-walk model, with compressive steps for 0 < R < 2/3 and expanding

steps for 2/3 < R < 1, and the complete two-dimensional mapping are compared with the red

and black points. The two approaches are consistent with each other to five figures and suggested

incorrectly that the Kaplan-Yorke information dimension ( blue ) was incorrect. The dependence

of the apparent value of DI on the choice of mesh was a surprise and deserves more attention.

IX. IRREVERSIBILITY AND THE SECOND LAW OF THERMODYNAMICS

The agreement of the linear interpolation and stochastic models to the determinis-

tic time-reversible Baker Map provides an intuitive understanding of the Second Law of

Thermodynamics25. In the general case of a thermostated time-reversible nonequilibrium

steady state the longtime-averaged flow from a zero-probability fractal repellor to its mirror-

image zero-volume strange attractor is invariably “dissipative”. Microscopic dissipation is

characterized by phase-volume shrinking, ⊗ → 0 as the macroscopic dissipative heat is

generated by the flow and extracted by time-reversible “thermostated” motion equations.

It is because the repellor has a positive Lyapunov sum, corresponding to an (impossible)
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exponential divergence of the phase volume, ⊗ → ∞, that repellor states can only arise by

storing and reversing a dissipative trajectory. With digital computers any stationary state

simulation will eventually generate a periodic orbit38. Using single-precision arithmetic the

Baker Map generates a periodic orbit of reasonable length. With double precision the length

of the period is inaccessible to an informal investigation.

We believe that the most valuable result catalyzed by Nosé’s exploration of computational

thermostats is the understanding of the inevitable statistical favoring of flows obeying the

Second Law (that nonequilibrium flows are dissipative). Likewise one can simply look and

see that nonequilibrium states are of vanishing probability relative to Gibbs’ equilibrium

states. The fascinating fractal character of nonequilibrium states underlines the interest in

the topological study of phase-space structure. One can imagine a continuous probability

distribution becoming fractal. This picture seems entirely unlike the one-dimensional tra-

jectory pursued by an individual nonequilibrium system in its point-by-point exploration of

6N -dimensional floating-point phase space. Whether or not the distinction between [ 1 ]

continuous variables and [ 2 ] the digital ones we use in modeling them is significant could

use a transparent investigation from a kind-hearted mathematician, assuming his existence!
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X. FUTURE CHARACTERIZATIONS OF DYNAMICAL SYSTEMS

The oscillator, Galton Board, and Baker Map problems provide an excellent introduction

to nonlinear dynamics, chaos, and, by venturing into the many nonequilibrium applications

of the thermostat idea, fractal geometry. A particularly simple nonequilibrium model is the

one-dimensional φ4 chain, where each particle interacts with a harmonic nearest-neighbor

force and is also tethered to its lattice site by a quartic potential. Adding thermostat

forces to both ends of the chain results in a conductive heat current from the “hot” end

to the “cold” one and invariably provides a fractal ( fractional-dimensional ) phase-space

attractor39. See again Figure 9 for the oscillator version of such a fractal.

The generic properties of the compressible Baker Map [ Lyapunov instability, steady-

state irreversible flow from a zero-volume ergodic fractal repellor to a mirror-image strange

attractor, quadratic dependence of the dissipation rate, (⊗̇/⊗), on the deviation from equi-

librium ] provide a fine illustration of the macroscopic Second Law of Thermodynamics in

terms of a microscopic time-reversible deterministic thermomechanics. At the same time the

fractal nature of the strange attractor-repellor pair still contains mysteries appropriate to

more computational research. Mathematics seems to be of little help here. The very notion

of an attractor in mathematics seems qualitatively unlike our computational observations.

In mathematics an attractor is thought of as an “infinite” set of points, but with the

concept of infinity muddled by the undecidability of the continuum hypothesis. The concept

of the cardinal number ℵ0 as the number of integers, or rationals, is not at all controversial.

That a “continuum” is different is obvious so that a count of points “in” the continuum

introduces a new infinity, sometimes called c. Gödel is credited with showing that it can’t

be shown whether or not c and ℵ1 = 2ℵ0 are one and the same. This standstill has lasted

nearly a century. At the moment the validity of the continuum hypothesis looks suspiciously

like a “meaningless question”, divorced from the reality of computation.

From the computational standpoint it appears that our floating-point numbers, all of

them rational, are certainly not a continuum. But they represent it well. Even quadruple-

precision arithmetic (closer to the continuum ?) is tedious in practice and typically teaches us

nothing new. From the computational standpoint the number of points in a two-dimensional

array can be arbitrarily larger than the number of those in a one-dimensional array. Likewise

for three dimensions relative to two. In mathematics whether the continuum is one-, two-,
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or three-dimensional the “number of points” c is all the same. It is here that mathematics

seems to deviate from useful to useless.

The computational analysis of fractals introduces a nonintegral dimension missing from

mathematics. In the vicinity of a point within a fractal one can characterize the density

of nearby points with a power law, δD. D can be nonintegral–the existence of the power

law can vary wildly with direction and can be made more precise and detailed by increasing

the precision or decreasing the mesh size to the limit of one’s budget. Example problems

shedding more light on the microstructure of nonequilibrium fractals remain a pressing need.
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Gradient”, Physical Review E 89, 042914 (2014).

28 L. Wang and X. S. Yang, “The Coexistence of Invariant Tori and Topological Horseshoes in
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