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Abstract

Hoover and Posch studied a single deterministic compressible time-reversible version of Eberhard

Hopf’s “Baker Map”. This particular version was selected to serve as a “Toy Model” of nonequilib-

rium molecular dynamics. Iterating the map generates an ergodic fractal distribution with measure

everywhere in a square domain. Two versions of the map are isomorphic to a third model, a one-

dimensional random walk confined within the unit interval (0 < y < 1) with leftward steps twice

as likely as rightward. This correspondence between two-dimensional time-reversible deterministic

(q, p) and (x, y) maps and the stochastic bounded one-dimensional y-direction walk is used here to

characterize discrepancies between three different formulations of the fractal information dimension

DI of the compressible Baker Map.

We compare the Kaplan-Yorke conjecture, believed valid for these models, DI
?
= DKY , to brute-

force computations of either a few, or as many as a trillion iterations of the one- and two-dimensional

Maps. The (q, p) Baker Mapping contains square roots. These irrational numbers provide sufficient

detail, or “noise”, to avoid the periodic orbits that would otherwise short-circuit the convergence of

the Baker Map to the steady state solutions found here. We find that the Kaplan-Yorke Lyapunov

dimension, DKY , accepted as correct for simple maps like ours based on the mapping of smooth

density functions, differs from the simplest of several information dimension estimates. The latter

estimate is based on repeated mappings of an initial point, as measured on a series of meshes

ranging from (1/3) in width down to (1/3)19. Other families of meshes support the conventional

wisdom that the small-mesh limiting information dimension is given exactly by the 40-year-old

Kaplan-Yorke “conjecture”.
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FIG. 1: The nonequilibrium Baker Map “N” maps the white southeast region with two-thirds

the area, at the far upper left, to the adjacent white southwest one-third the area region at the top

right of the leftmost figure. Moving right, we see the flow from the repellor, at the center here, to

the attractor at the right can only be time-reversed by storing and reversing a forward trajectory :

N−1 ≡ TNT. The flows here are achieved by repeated mappings of a single point. The momentum-

like vertical variable p has its sign changed by time reversal, T(±q,±p) = (±q,∓p). The coordinate-

like horizontal variable q is unchanged by reversal. The repellor has zero probability, with two-

thirds of its (vanishing) measure located in its northwest third. The mirror-image attractor has

unit probability, with two-thirds of it in the southwest third of the attractor image shown at the far

right. The steady-state information dimensions, based on meshes of width (1/3)n, of the fractals at

the center and right are 1.741, as is discussed in the text. The Kaplan-Yorke Lyapunov dimension

is only 1.7337 for this map. This discrepancy is a puzzle. For another puzzle see Figure 2.

I. THREE MODELS OF COMPRESSIBLE TIME-REVERSIBLE BAKER MAPS

Nonequilibrium computer simulations make use of deterministic time-reversible boundary

regions so as to simulate shear flows and heat flows. The boundary regions are maintained

at specified velocities and/or kinetic temperatures with feedback forces of the type pioneered

by Shuichi Nosé in 19831,2 and clarified by Bill, Harald Posch, and Franz Vesely in 1984-

19853,4. By 1987 it became apparent that these time-reversible nonequilibrium systems

generate fractal attractors in phase space, “strange attractors”, where neighboring systems

typically depart from one another exponentially fast, within a negligibly small, but ergodic

and fractal, fraction of the occupied phase space5–7. A well-attended week-long Budapest

workshop was influential in spreading these ideas world-wide8 in 1997.
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A. Information Dimension from Bin Probabilities

Grebogi, Ott, and Yorke9 were followed by Dellago and Hoover10 in showing that the

length of the stable numerical periodic orbits in a coarse-grained digital phase space follows

a simple stochastic model. Imagining that trajectories jump randomly from state to state

reproduces the observed periodic orbit lengths for a variety of deterministic models. The

orbit length varies as the square root of the number of coarse-grained states, (1/δ)Dc/2,

where DC is the correlation dimension and δ is the grain size of the states. The correlation

dimension describes the power-law variation of separated attractor points in the vicinity of

another attractor point from a relatively distant time. Typical basins of attraction of these

sparse computational fractals have the dimensionality of the full phase space9,10. Typically

these fractals, though sparse with zero volume, are also ergodic, with some nonvanishing

measure throughout their domains. For that reason we use the information dimension of

their measure as a way of distinguishing ergodic fractals with some measure everywhere.

The information dimension is the small-mesh limit, δ → 0, of

DI(δ) =
∑

bins

P lnP/ ln δ with
∑

bins

P ≡ 1 .

Because the probability P of a D-dimensional volume element is proportional to δD, P ∝ δD.

The specific map we consider here is the compressible, time-reversible, deterministic

Baker Map of Figure 1. It was developed by Posch and Hoover, and analyzed further by

Kumiĉák11,12. It serves as a Toy Model for the generic steady states generated by nonequi-

librium molecular dynamics. To mimic molecular dynamics we sought a map which was not

only deterministic but also time-reversible. This is the (q, p) Baker Map.

We describe three different versions of these Baker Map motion equations, and comment

on their time reversibility, next. The three versions are [ 1 ] the basic time-reversible (q, p)

map, [ 2 ] a more conventional but equivalent Cartesian (x, y) map, which lacks reversibility,

and [ 3 ] a one-dimensional stochastic random walk on the interval (0 < y < 1) which

captures the chaotic motion of its two-dimensional deterministic relatives.

B. Time Reversibility and the (q, p) Baker Map

A map M is said to be time-reversible when it can be reversed by a three-step process:

[ 1 ] changing the signs of the momentum-like variables, [ 2 ] propagating all the variables
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one (“backward”) iteration, and then changing the signs of the momenta once more, so that

the inverse of the map M is given by M−1 = TMT. In ordinary Hamiltonian mechanics

the T mapping simply maps (±q,±p) → (±q,∓p). Bill’s conversations with Bill Vance

during Vance’s graduate work at the University of California’s Davis campus led us to a

nonequilibrium rotated version of the Baker Map B which we call N, for “Nonequilibrium”.

This Map’s domain is the diamond-shaped region, centered on (q, p) = (0, 0) and shown at

the left of Figure 1. Now imagine that the map N is applied to a representative input point

(q, p). This operation produces the next point (q′, p′).

Our nonequilibrium Map, N(q, p) → (q′, p′) has the following form : For twofold expan-

sion, q < p−
√

2/9 :

q′ = (11q/6)− (7p/6) +
√

49/18 ; p′ = (11p/6)− (7q/6)−
√

25/18 .

For twofold contraction, q > p−
√

2/9 :

q′ = (11q/12)− (7p/12)−
√

49/72 ; p′ = (11p/12)− (7q/12)−
√

1/72 .

Figure 1 shows the resulting concentration of probability into bands parallel to the bottom

left and upper right edges of the diamond.

In conventional Cartesian coordinates, with 0 < x, y < 1, a topologically equivalent map

B is

x > (1/3) → x′ = (3x− 1)/2 ; y′ = (y/3) ;

x < (1/3) → x′ = 3x ; y′ = (1 + 2y)/3 .

Although the algebra is more cumbersome we have chosen to use the rotated (q, p) version

of this map, centered on the origin and confined to a diamond-shaped region of sidelength 2,

as shown in Figure 1. We regard the horizontal q variable as a coordinate and the vertical p

variable as a momentum. The Figure illustrates the time-reversibility of the (q, p) map. This

similarity to nonequilibrium molecular dynamics, along with the square roots generating the

45o rotation, are the twin advantages of the nonequilibrium diamond-shaped map N. The

square roots eliminate many of the artificial periodic orbits due to finite computer precision.

Beginning at the center point of the rational-number square map, (x, y) = (0.5, 0.5), leads

to a periodic orbit of just 3096 single-precision iterations. Starting instead at the equivalent

central point of the irrational-number diamond map, (q, p) = (0.0, 0.0), leads to a single-

precision periodic orbit of 1,124,069 iterations. With double-precision arithmetic the orbits
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are much longer, 146,321,810 for the (x, y) map. 1012 such double-precision (q, p) iterations

from the equivalent initial condition gave no repeated points.

A single one-dimensional Baker-Map mapping of a uniform distribution of many points

( millions or billions ) on the interval (0 < y < 1) puts 2/3 of the measure into the lefthand

interval of width 1/3. The remaining 1/3 of the measure is mapped into the remaining

interval of length 2/3. Figure 2 illlustrates the iterated operation of the Baker Map for

1, 2, 3, and 4 iterations applied to an initially uniform distribution. For simplicity here

we have projected the result of the mapping onto the unit interval in y rather than the

2 × 2 diamond or unit square. The singly-mapped measure corresponds to measures of

(2/3) and (1/6) and (1/6) in three equal-width intervals, and so to an approximate one-step

information dimension after a single iteration of many uniformly-dense points :

DI(1) = [ (2/3) ln(2/3) + (1/6) ln(1/6) + (1/6) ln(1/6) ]/ ln(1/3) = 0.78969 .

Although it is a surprise to find that the same information dimension results for 2 or 3 or

4 iterations, that result is fully consistent with the scale-model nature of the distribution,

as shown in Figure 2. Evidently the mapping of a uniform distribution thus gives results

quite different to those from the iteration of a single point ( or a delta function ).

If we do follow the alternative many-iteration history of a typical point, iterated 20 billion

times we find probabilities for the three intervals corresponding to a somewhat reduced in-

formation dimension along with a substantial difference in the populations of the middle and

rightmost intervals. Here is the accurate three-bin approximation using 20 billion iterations:

DI ≃ [ (2/3) ln(2/3) + 0.29516 ln(0.29516) + 0.03818 ln(0.03818) ]/ ln(1/3) = 0.6874 .

The vanishing bin-size limit, ( with many iterations per identically-sized bin ) of this proce-

dure, entropy, divided by the logarithm of the mesh size evidently approaches DI = 0.741 if

bins of size (1/3)n are used13.

The data of Figure 2 show that iterating the map twice gives nine occupation probabil-

ities for nine equal-sized bins,

{ (4/9), (1/9), (1/9), (1/9), (1/9), (1/36), (1/36), (1/36), (1/36) } ,

for the nine strips of width (1/9) parallel to the x axis, and so to DI :

DI(2) = [ (4/9) ln(4/9) + (4/9) ln(1/9) + (1/9) ln(1/36) ]/ ln(1/9) = 0.78969 [ Again ! ] .
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FIG. 2: Histograms of the (base-4 logarithm of) probability density ρ(y) for 1, 2, 3, and 4 iterations

of the y component of the Baker Map B. Notice that the rightmost (2/3) of each mapping is a

perfect scale model of the leftmost (1/3). The information dimension of all these iterates is the

same,
∑

P ln(P )/ ln(δ) = 0.78969 ! This puzzling result differs from both the Kaplan-Yorke value

of 0.7337 and the extrapolated 0.741 based on mesh sizes of (1/3)n and illustrated in Figure 3.

The same information dimension results with 3 or 4 or 5 or ... iterations of the map and 33

or 34 or 35 or ... equal-sized bins. Though suggestive, this result does not at all indicate that

the information dimension of the pointwise stationary solution DI(∞) is 0.78969. In fact

for n bins of width (1/3)n the information dimension appears to approach 0.741 for large n,

as we shall soon see.
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FIG. 3: Stationary estimates of DI for the random-walk model of the Baker Map with results

for 35,10,15 equal bins emphasized. The lines join points computed with 1, 2, 4, 8 . . . 256 billion

iterations of the random-walk version of the Baker Map. The two values shown at the zero bin-

size limit (δ → 0) are the Kaplan-Yorke dimension, 0.7337, and a plausible extrapolation of two

trillion-iteration computations with as many as 319 bins. Note the qualitative difference of the

mesh dependence ( the slope is uniformly negative here ) compared to those shown in Figures 4

and 5. The two open circles at n = 18 and 19 correspond to 210 × 109 iterations. The directions

of the individual random-walk steps were based on the FORTRAN subroutine Random Number(r).

II. A STATIONARY INFORMATION DIMENSION DI(∞)

It is quite practical to iterate the two-dimensional (q, p) map “N” as many as a trillion

times, but for less than a still-practical 319 = 1, 162, 261, 467 bins the information dimension

converges relatively rapidly. Fewer iterations are needed. For a million iterations, 106 rather

than 1012, and 35 = 243 bins the information dimension is 0.71447. For ten million 0.71488.

For 100 million 0.71498 and for one billion 0.71501, which we would guess is within 0.00001 of

the limiting value. The reason for the dimension different to 0.78969 stems from the latter’s

unrealistic initial condition, uniform coverage of the square domain. A billion iterations of

a single point are sufficient to obtain the correct dimensionality within 0.0001 or 0.00001,

as would be expected from the Central Limit Theorem.

Let us refine the mesh to 310 = 59, 049 bins. The estimates of the information dimension
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FIG. 4: Stationary estimates for the Baker Map Information Dimension using up to 415 and 513

bins of equal width. The rightmost data, based on forty billion iterations of the random walk

mapping suggest agreement with the Kaplan-Yorke dimension of the (q, p) and (x, y) Baker Maps,

DKY = 0.7337.

for the four choices of iteration now give 0.72525, 0.72725, 0.72753, 0.72757. A geometric

series suggests 0.72758 as a good estimate for 310 bins. A mesh with 315 = 14, 348, 907 bins

provides the four estimates 0.70014, 0.72378, 0.73059, and 0.73205, suggesting adding 10 and

100 billion and a trillion iterations to our statistics, giving 0.73223, 0.732264, and 0.732267,

confirming DI = 0.73227 as accurate for 315 bins. With the knowledge that the information

dimension depends linearly on 1/ ln(δ) the data using 35,6,...,19 give an estimate DI = 0.741.

Let us compare this to the Kaplan-Yorke estimate from the Lyapunov exponents of the map.

For a preview see Figure 3 which shows the discrepancy between the data and the estimate

to be about one percent.
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FIG. 5: Stationary estimates for the Baker Map Information Dimension using up to 611 and 711

bins of equal width. These data, like those in Figure 4, are based on forty billion iterations of

the random walk mapping. Both the Kaplan-Yorke dimension 0.7337 and the estimate 0.741 from

Reference 13, based on meshes with up to 319 equal bins, are shown as open circles at the left

border of the δ = 6−n plot.

III. KAPLAN-YORKE OR “LYAPUNOV DIMENSION”

Kaplan and Yorke suggested that a linear interpolation formula between the last positive

sum of exponents, starting with the largest, λ1, and the first negative sum, 0 >
∑

i≥1 λi

would be a useful prediction for the information dimension14,15 . In fact they cite many

a case, including theoretical work carried out by L. S. Young, for which their conjectured

estimate is exactly correct. It should be noted that the “heuristic proof” on page 162 of

Reference 15 does not apply to ergodic attractors.

The white portion of the compressible Baker Map of Figure 1 causes (2/3) of the measure

to stretch by a factor (3/2) while the black portion causes (1/3) of the measure to stretch

by a factor of 3. As a result

λ1 = (2/3) ln(3/2) + (1/3) ln(3) = (1/3) ln(27/4) = 0.63651 .

Likewise (2/3) of the measure shrinks by a factor 3 while (1/3) by a factor (2/3) so that

λ2 = (2/3) ln(1/3) + (1/3) ln(2/3) = (1/3) ln(2/27) = −0.86756 .

The linear interpolation gives 0.63651/0.86756 = 0.73368. This Lyapunov dimension is the

Kaplan-Yorke dimension.
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IV. CONCLUSIONS AND DISCUSSION

Relatively simple numerical work, on the order of a few dozen lines of FORTRAN, and a

few hours of laptop time, are enough to characterize the variety of results for DI based on [1]

iterating distributions or [2] generating representative series of points. These two different

views of fractal structure are analogs of the Liouville and trajectory descriptions of particle

mechanics. We think the singular anisotropy of fractals favors the pointwise approach. We

found that pointwise analysis with the mesh series (1/3)n appears to contradict the Kaplan-

Yorke dimension while the alternative series (1/4)n, (1/5)n, (1/7)n support it. The series

(1/6)n is inconclusive.

Though the one-dimensional bounded random walk provides a fractal distribution {y}

indistinguishable from that for the compressible Baker Map, the walk analog lacks the

Baker-Map Lyapunov exponents on which the Kaplan-Yorke dimension relies :

λ1 = (1/3) ln(27/4) ; λ2 = (1/3) ln(2/27) → DKY = 0.73368 .

The variety of results obtained here for a specific map underline the value of studying

particular, as opposed to general, models.
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