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Abstract

Shuichi Nosé opened up a new world of atomistic simulation in 1984. He formulated a Hamilto-

nian tailored to generate Gibbs’ canonical distribution dynamically. This clever idea bridged the

gap between microcanonical molecular dynamics and canonical statistical mechanics. Until then

the canonical distribution was explored with Monte Carlo sampling. Nosé’s dynamical Hamiltonian

bridge requires the “ergodic” support of a space-filling structure in order to reproduce the entire

distribution. For sufficiently small systems, such as the harmonic oscillator, Nosé’s dynamical ap-

proach failed to agree with Gibbs’ sampling and instead showed a complex structure, partitioned

into a chaotic sea, islands, and chains of islands, that is familiar textbook fare from investigations of

Hamiltonian chaos. In trying to enhance small-system ergodicity several more complicated “ther-

mostated” equations of motion were developed. All were consistent with the canonical Gaussian

distribution for the oscillator coordinate and momentum. The ergodicity of the various approaches

has undergone several investigations, with somewhat inconclusive ( contradictory ) results. Here

we illustrate several ways to test ergodicity and challenge the reader to find even more convincing

algorithms or an entirely new approach to this problem.
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I. INTRODUCTION

In 1989 Shuichi Nosé won IBM-Japan’s science prize for his 1984 discovery1,2 of a dynam-

ical Hamiltonian approach to Gibbs’ canonical ensemble. He added a new “time-scaling”

variable s ( and its conjugate momentum ps ) to the usual list of # Cartesian degrees of

freedom, coupling the kinetic energy to a logarithmic temperature-dependent potential for

s :

HN(q, p, s, ps) =
#∑
(p2/2ms2) + Φ(q) + (p2s/2M) + (# + 1)kT ln(s) .

Multiplying the resulting equations of motion by s ( “scaling the time” ) gives a set of

(2# + 2) dynamical motion equations fully consistent with Gibbs’ canonical ensemble ,

f(q, p) ∝ e−H/kT ,

provided that we replace (p/s) by p in the scaled equations of motion.

Hoover3 soon pointed out the lack of ergodicity for this approach, applied to a harmonic

oscillator, and at the same time simplified the derivation of a set of (2# + 1) equations of

motion only slightly different to Nosé’s :

{ q̇ = (p/m) ; ṗ = F − ζp } ; ζ̇ =
#∑
[ (p2/mkT )− 1 ]/τ 2 .

The friction coefficient ζ in these “Nosé-Hoover” equations is proportional to Nosé’s ps .

These equations are much better behaved numerically and also make the extra s variable

redundant. Carl Dettmann showed4 that these same equations follow from a Hamiltonian

like Nosé’s provided that the Dettmann Hamiltonian is arbitrarily set equal to zero and the

number of degrees of freedom is # rather than # + 1 ,

HD ≡ sHN ≡ 0 .

Hoover and Harald Posch and Franz Vesely5,6 investigated the details of these dynamics

for the harmonic oscillator and discovered an infinite variety of periodic, toroidal, and chaotic

solutions, with the sum of all of these disparate parts equal to the canonical distribution,

the product of three Gaussian functions, in q, in p, and in ζ for the oscillator.

Bauer, Bulgac, and Kusnezov7,8 generalized the thermostating approach to include two

or more control variables, even managing to reproduce Brownian motion by using three

of them. Soon after, Martyna, Klein, and Tuckerman9 suggested the use of a chain of

2



thermostat variables to enhance ergodicity. Their equations of motion ( for the shortest

chain and with all the free parameters equal to unity ) are :

{ q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − 1− ξζ ; ξ̇ = ζ2 − 1 } . [ MKT ]

Presently, Hoover and Holian suggested a different dual-control approach10, fixing both the

second and fourth velocity moments :

{ q̇ = p ; ṗ = −q − ζp− ξp3 ; ζ̇ = p2 − 1 ; ξ̇ = p4 − 3p2 } . [ HH ]

Equations controlling the sixth or higher moments tend to be too stiff for practical use.

Very recently Patra and Bhattacharya11 took a different direction, stimulated by work on

the “configurational temperature”, as opposed to the usual kinetic one. For the oscillator

the configurational temperature12 is proportional to the potential energy, 〈 q2 〉. Patra

and Bhattacharya had the clever idea of imposing both temperatures simultaneously on

the oscillator. Their feedback equations use one friction coefficient, ζ , to control kinetic

temperature, and the other, ξ , to control configurational temperature , 〈 q2 〉 :

{ q̇ = p− ξq ; ṗ = −q − ζp ; ζ̇ = p2 − 1 ; ξ̇ = q2 − 1 } . [ PB ]

We wish to emphasize that all three approaches followed here, Martyna-Klein-Tuckerman,

Hoover-Holian, and Patra-Bhattacharya, if ergodic, provide exactly the same four-

dimensional Gaussian distribution ,

(2π)2f(q, p, ζ, ξ) ≡ e−(q2/2)e−(p2/2)e−(ζ2/2)e−(ξ2/2) .

To prove that this is so it is only necessary to evaluate Liouville’s continuity equation for the

flow in phase space, showing that the four-dimensional Gaussian distribution is stationary :

(∂f/∂t) ≡ −f [ (∂q̇/∂q) + (∂ṗ/∂p) + (∂ζ̇/∂ζ) + (∂ξ̇/∂ξ) ]

−q̇(∂f/∂q)− ṗ(∂f/∂p)− ζ̇(∂f/∂ζ)− ξ̇(∂f/∂ξ) ≡ 0 .

Let us turn to the question of establishing ergodicity for the three dynamical models,

MKT, HH, and PB . Our own approach, because we know it best, is computational. It is

possible that a more convincing “rigor mortis” approach could be developed from a mathe-

matical standpoint. At the moment any “proof” of ergodicity is an “open problem”. In seven

brief sections we describe some of the methods that have been applied to this problem13,

ending with a challenge for the reader.
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FIG. 1: Chaotic sea for the Martyna-Klein-Tuckerman, Hoover-Holian, and Patra-Bhattacharya

oscillators. The initial condition for these trajectories was (q, p, ζ, ξ) = (0, 5, 0, 0) in all three cases.

100,000 equally spaced (q, p) points are plotted for each model. The Patra-Bhattacharya oscillator

has clear deviations from hyperspherical symmetry. The fourth-order Runge-Kutta timestep is

0.001 for all of the computations in our work. Here ten million timesteps were used. Note the holes

in the MKT and HH projections and the lack of circular symmetry in the PB projection.

II. TIME AVERAGES OF THE MOMENTS

Because kinetic temperature is the second velocity moment it is usual to confirm that

the first few velocity moments agree with the canonical distribution. A short fourth-order

Runge-Kutta calculation, adding (p2, p4, p6) to the list of righthandsides being integrated,

shows that the second, fourth, and sixth moments of the MKT and HH equations match

the values expected from a Gaussian, (1, 3, 15) to three or four significant figures while the

PB model gives instead (1.000, 3.8, 23.5) . These results are conclusive evidence that only

the MKT and HH equations are candidates for ergodicity. Nevertheless we will apply each

of our numerical tests to all three sets of motion equations, in order to see the difference

between the difficult and the easy.
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III. PROJECTIONS

The Projections of the four-dimensional dynamics onto any plane, such as the

(q, p), (q, ζ), (q, ξ), (p, ζ), (p, ξ), (ζ, ξ) planes, should look Gaussian without any holes. For

simplicity we use the initial condition p = 5 with the other variables initially zero, promot-

ing chaos for all three sets of equations. The MKT and HH equations both appear to have

a small hole near the origin of the (qp) plane. The PB equations produce a very different

pattern, showing a strong positive correlation between the two variables, another indication

that these equations though sometimes chaotic, are not ergodic. See Figure 1 for a com-

parison of the three models in the (q, p) planar projection. These results suggest two further

checks, a look at the density near the (q, p) origin and a search for periodic orbits, which

would be necessary in order that any holes form in the Gaussian distributions.

IV. DENSITY

The probability density for the four-dimensional Gaussian at a radius of 0.1 has decreased

from its maximum value at the (0, 0, 0, 0) origin by a factor of

[ ρ(r = 0.1)/ρ(r = 0.0) ] = e−r2/2 = e−0.005 ≃ 1.00000− 0.00500 + 0.00001 = 0.99501 ,

so that the densities determined from trajectories should hardly vary within that four-

dimensional sphere provided that the flow is ergodic. Measuring density requires considerably

longer runs because the time interval between visits near the origin increases at least as

rapidly as (r−4) . We measured the probability densities for the MKT and HH algorithms

inside (q, p) circles of area 0.01π×(1, 1/2, 1/4, 1/8, 1/16) using a billion timesteps, and found

no significant difference in density over that range. Evidently the MKT and HH algorithms

behave as though they were ergodic. The difference between those densities and the PB

chaotic density was approximately a factor of two, indicating that approximately half the

PB measure is chaotic and the other half quasiperiodic, and so omitted from this chaotic

simulation.

It is worth mentioning that the MKT equations have two fixed points, though in the end

neither one is actually attractive. In the special case that q and p both vanish so that q̇ and

ṗ are likewise zero, the remaining equations of motion are :

ζ̇ = −1− ξζ ; ξ̇ = ζ2 − 1 .
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These equations describe a flow from the unstable two-dimensional fixed point (−1,+1)

to the stable ( only in two dimensions ) fixed point (+1,−1) . These flow equations are

isomorphic to those of a one-dimensional particle in a constant field, with ζ playing the rôle

of momentum and ξ acting as the friction coefficient. Patra and Bhattacharya’s assertion

that the MKT equations are not ergodic relies on analyses in the vicinity of these two fixed

points. That type of work is complicated by the fact that the four-dimensional flow becomes

more and more intermittent as one nears either of these two points. Nevertheless we believe

that our analysis in this Section and particularly in Section VII below casts doubt on their

claim ( hence our offering of the 2014 Ian Snook Prize on that subject, as is described in

Section IX ) .

V. PERIODIC ORBITS

Choosing an initial condition somewhat closer to the origin

{ q, p, ζ, ξ } = { 0.68, 0.68, 0, 0 }

gives (q, p, ζ) projection plots which “look” spherical for the MKT and HH equations. The

PB equations, on the other hand, provide a clearly-defined torus, shown in Figure 2 . The

PB dynamics has been projected into three-dimensional (q, p, ζ) space. The PB projection

shows that the phase-space distribution has at least one large cavity in the chaotic sea and

that the cavity contains a family of nested tori.

VI. ENSEMBLE TESTS

Because a lack of ergodicity implies segregated regions in the (q, p, ζ, ξ) space it is a

tempting idea to study ensembles of initial conditions, expecting to find two or more distinct

longtime-average values rather than a Gaussian Central-Limit-Theorem distribution around

a single ergodic average value. In addition to moments, and their correlations, the largest

Lyapunov exponent should be a particularly “good” property to follow. Although some

complicated attractors ( such as Rayleigh-Bénard flows ) have more than a single chaotic

strange-attractor region such a situation is implausible for the simple oscillator. Therefore
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FIG. 2: Patra-Bhattacharya torus with initial conditions (q, p, ζ, ξ) = (0.68, 0.68, 0, 0). Choosing

(0.5,0.5,0.0,0.0) generates a very thin torus close to the periodic orbit at the center of the larger

torus shown in the figure. 50,000 points are plotted.

it seems likely that a random or a grid-based selection of initial points would produce at

least a bimodal distribution of values for a nonergodic set of equations. Some ensemble tests

of this kind were carried out in References 6 and 13.

VII. MANY LYAPUNOV EXPONENTS

Taking up the ensemble idea we choose 1000 different initial conditions in the four-

dimensional hypercube of sidelength four centered on the origin, following each of them

for 106 timesteps. Though there is no reason for the HH and MKT exponents to agree

there turns out to be good agreement between them, as Figure 3 shows. On the other

hand the PB equations’ Lyapunov exponents separate into two distinct values, 0.0000 and

0.14, characteristic of their separate portions of the phase space. We view the density and

Lyapunov tests as the most convincing evidence that both the MKT and the HH algorithms

are ergodic.

VIII. HISTORY OF THE EXTREMAL LYAPUNOV EXPONENTS

To nail this conclusion down we took the two extreme cases ( the maximum and minimum

Lyapunov exponent out of 1000 simulations ) and ran them 1000 times longer. Figure 3

shows the behavior of the ensemble of initial conditions for the Martyna-Klein-Tuckerman

and Hoover-Holian models. Figure 4 shows a comparison of the maximum and minimum
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FIG. 3: Time-averaged Lyapunov exponents for the Martyna-Klein-Tuckerman, Hoover-Holian,

and Patra-Bhattacharya oscillators. 1000 trajectories are traced from points located randomly

within a 4 × 4 × 4 × 4 hypercube centered at the coordinate origin. Although there is no reason

that the MKT and HH results should agree, or nearly so, the two models have similar Lyapunov

exponents. The Patra-Bhattacharya motion equations lead to two clumps of exponents at long

times, one at 0.0000 and the other at 0.14.

Lyapunov-exponent calculations, carried out for a time 1000 times longer. The MKT and

HH data show no significant difference between them, strongly suggesting that the entire

set of random trajectories started in a 4× 4× 4× 4 hypercube are part of the same chaotic

sea, filling all of space in a Gaussian manner for the Martyna-Klein-Tuckerman and Hoover-

Holian oscillators.

IX. FURTHER TESTS

Patra and Bhattacharya also determined phase-space density numerically, in one- or two-

dimensional cross sections15. They also computed mean deviations of long-time-averaged

distributions from the canonical one as averages. Their final conclusion is that the Martyna-

Klein-Tuckerman algorithm is not ergodic. Our own evidence for that same problem points in
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FIG. 4: Time-averaged Lyapunov exponents for two runs 1000 times longer than those in Figure

3. The initial conditions were chosen to match those of the minimum and maximum values shown

at the righthand margin of Figure 3. The convergence of the two outliers toward a common value

is a strong indicator of ergodicity.

the opposite direction, toward ergodicity. We thank Puneet Patra, Baidurya Bhattacharya,

and Clint Sprott for an exchange of hundreds of stimulating emails on this general subject,

and specially appreciated a personal visit from Professor Bhattacharya this summer.

X. CONCLUSIONS – IAN SNOOK PRIZE FOR 2014

The disagreement between our own investigations past and present ( which agree with

those of Martyna, Klein, and Tuckerman ) and those of Patra and Bhattacharya are both

thought-provoking and stimulating. Last year we offered a prize to honor the memory of

our Australian Colleague Ian Snook. We asked arXiv readers for a time-reversed version

of a simple pseudorandom number generator with a cycle length of 222 . Within 24 hours

Professor Federico Ricci-Tersenghi ( University of Rome ) won the prize with the elegant

solution described in his arXiv.1305.1805 contribution16, “The Solution to the Challenge in

‘Time-Reversible Random Number Generators’ by Wm. G. Hoover and Carol G. Hoover”.

His generator can be used, for instance, to reverse Brownian dynamics trajectories, a demon-

stration problem in our forthcoming book on the management and control of nonequilibrium

systems.
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FIG. 5: Shuichi Nosé ( 1951-2005 ) and Ian Snook ( 1945-2013 )

This year we invite the readers of Computational Methods in Science and Technology to

consider thoughtfully this interesting problem in classical statistical mechanics and dynam-

ical systems theory. Specifically the Ian Snook Prize for 2014 will be awarded to whomever

submits the most convincing treatment of this problem to us prior to 1 January 2015. The

question to be discussed is “To what extent are trajectory-based solutions of the Martyna-

Klein-Tuckerman harmonic-oscillator motion equations ergodic?”

It is our intention to reward the most convincing entry received ( or submitted to the

arXiv or to Computational Methods in Science and Technology ) prior to 1 January 2015.

The 2014 Ian Snook prize of five hundred United States dollars will be presented to the

winner in January 2015. We would be very grateful for your contributions. We dedicate this

work to the memories of our two colleagues shown in Figure 5 .
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